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Cooperative transport by a swarm of Quadcopters offers more flexibility and performance when carrying loads
that are complex in structural profile and mass. Ensuring that team members of the swarm are optimally placed
on these loads as well as able to resist disturbances from the environment during transport are current research
challenges. In this paper, we present a decentralized behaviour based subsumption architecture for enabling a
swarm of Quadcopters to explore an unfamiliar area, find a load and transport it to a target location cooperatively.
In the architecture, three behaviours were used: an obstacle avoidance behaviour to avoid collisions with objects
in the environment, a flocking behaviour to ensure swarm structure and a bacterium behaviour for exploration
of the environment and to adapt to the mass profile of various detected loads.

By adapting to the mass profile of a detected load, we show that our architecture ensures even energy distribution
among Quadcopters while achieving robustness to disturbances from the environment. Our results show that a
mass adapting swarm is able to conserve energy during payload transportation when compared to a swarm that
does not adapt to a load’s profile. Furthermore, we do not use explicit communication between team members
but instead rely on data from visual sensors attached to the Quadcopters. We experiment with simulations in a
physics informed robot simulator called CoppeliaSim and demonstrate the effectiveness of our architecture when

utilized for cooperative transport of irregular loads.

1. Introduction

Rotary aerial robotic systems can provide increased efficiency and
productivity in many sectors [1]. Due to their excellent control perfor-
mance and convenience of vertical take-off and landing, rotary aerial
robotic systems have gained widespread adoption in various sectors such
as cargo carrying, package delivery and warehousing management. In
order to cope with increasingly complex and varied load transport sce-
narios, the capability of a single robot can no longer meet many require-
ments (Fig. 1). Thus, the current consensus is that multiple agent sys-
tems can offer an increased performance on flexibility, robustness and
payload weight when compared with one single capable robot [2,3].
Through cooperation of multiple individuals, larger loads with complex
shapes can be transported. Nevertheless, the coordination and control
of multiple aerial vehicles raises challenges that have to be dealt with.
In literature, there are two prevailing approaches to tackle these chal-
lenges: (i) mathematical approaches that rely on modelling and optimi-
sation as well as (ii) nature inspired approaches that rely on the advan-
tages of swarm robotics.

* Corresponding author.

Mathematical modelling based approaches offer tools that can be
used to model systems and guarantee stability as well as robustness to
disturbances. Leader-follower formations are one of the simplest mul-
tiple agent schemes for transporting loads and they are often a start-
ing point for model based approaches [4-6]. A leader follower forma-
tion was used in [5] to transport a cable-suspended beam load by two
aerial vehicles. This approach made use of mathematical modelling to
derive a decentralised communication-less master-slave admittance con-
troller. In their approach, the leader used implicit communication via
cable forces to guide the system to a destination. A similar approach in
[7] used visual feedback to maintain the relative position between the
leader and the follower.

In [8], micro-UAV controllers were derived for transporting a prior
known load configuration. An extensive system identification process,
including a knowledge of the load’s effect on cable tensions, was used
in order to derive the parameters for the model. Furthermore, they re-
lied on the use of globally available state data to inform the position
of agents participating in the load transport exercise. This technique
could be extended to more complex scenarios in which a load with an
unknown mass distribution is to be transported. However, this would
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(a) transport a L shape load

(b) transport a peanut shape load

Fig. 1. A swarm transporting a load cooperatively by adapting to the load’s
mass.

require even more nontrivial complex modelling in order to guarantee
the best micro-UAV configuration for transporting various loads [9]. In
order to deal with different load masses of linear deformable objects
(e.g cables, ropes), [10] applied the particle swarm optimisation and
fuzzy logic in searching for the optimal parameters to apply to PID/PD
controllers on micro-UAVs for a smooth, fast and reliable behaviour.
Through a model of the system, the states of the cables and the required
behaviour from the micro-UAVs was derived.

However, the modelling approach that couples micro-UAVs to loads
makes it challenging to extend such systems to even more varying load
scenarios and varying numbers of micro-UAVs. Towards expanding to
larger numbers of micro-UAVs and generic loads, [11] modelled each
subsystem (Quadcopter and load) independently with interactions be-
tween them represented as force and moment transfers. The advantage
of this approach is that it can be scaled on demand to varying situations.
Furthermore, their approach was able to ensure that the load mass was
evenly distributed among the agents during transport. This was achieved
through the use optimisation techniques to derive parameters for the PID
controllers used in their scheme.

Even though the above approaches are susceptible to errors in mod-
elling, when done correctly and with the right assumptions made, they
are very robust to external disturbances. In order to tackle these mod-
elling challenges, perhaps the use of machine learning techniques, such
as neural networks and Reinforcement learning, could be used for sys-
tem and controller identification purposes [12]. However, this intro-
duces the need for extensive data collection and training.

In addition to stability and robustness, energy distribution and man-
agement among a team of micro-UAVs is important during collaborative
transport. This is an area that still requires more detailed research [13].
The management of energy in multi-UAV collaborative transport is im-
portant since power failure in one of the micro-UAVs can result in the
failure of the whole operation. This is even more important when con-
sidering mathematical based approaches since it is difficult to model un-
predicted failures. This is an area where the concept of swarm robotics
could support in deriving strategies to ensure mission continuation and
completion even in the presence of a failed agent.

Swarm robotics approaches are inspired by nature and offers the ad-
vantages of natural systems such as robustness (ability to cope and adapt
with the death or loss of individuals), scalability (ability to perform well
with different group sizes) and flexibility (the ability to cope with varia-
tion in the environments) [14]. By extension, autonomous aerial swarms
are expected to be more capable than a single large vehicle, offering sig-
nificantly enhanced flexibility, adaptability, scalability, and robustness
[15]. Such systems offer the advantage of being resilient and tolerant
of noise in the sensors and the environment [16]. Furthermore, swarm
robotics offers the promise of achieving the completion of complex tasks
via simplistic agents that follow simple rules in their controllers. Nev-
ertheless, engineering efficient swarm behaviours is still a big research
challenge. Many tools have been proposed to deal with this challenge.
They include the use of reinforcement learning, evolutionary principles
and behaviour based architectures. The former two rely finding the op-
timal control policy in a large search space while the latter relies on
designing and adding modular behaviours to an architecture [2,3].
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Behaviour based architectures provide the ability to develop hy-
brid nature inspired algorithms and design swarm system effectively
by adding the required ingredients (behaviours) needed to accomplish
a goal [17]. By adding the ingredients as modules, each module can be
separately debugged, tuned and its effect on the system analysed. They
also provide the ability to achieve hierarchical architectures in which
the modules can be organised into multiple control levels with each op-
erating at varying granularities, levels of abstraction and time scales
[2].

Chung et al. [18] highlighted the potential of applying hierarchi-
cal architectures to achieve well-founded, computationally-efficient and
scalable algorithms for aerial swarms. Hierarchical architectures pro-
vide scaffolding for algorithms and can result in scalable systems that
can achieve decentralized planning, reasoning, learning, and percep-
tion in the presence of uncertainties. Furthermore, such approaches
have been found to be useful in both the machine learning and con-
trol fields for dealing with complexity and high dimensionality. Chung
et al. [18] proposed that learning and decision-making architectures to
provide aerial robot swarms with high levels of autonomy and flexi-
bility will ensure reduced risk and cost as well as robust autonomous
operations.

The behaviours for a behaviour based architecture system can be
designed in any way deemed necessary by the designer to achieve a
goal. For example, in [19] a set of basic functionalities (called elemen-
tary behaviours) were designed and combined in a priority order to at-
tain complex tasks. In [20], fuzzy rules were used to develop the be-
haviours of a swarm required to perform exploration and navigation
in an environment. Apart from the use of classical controllers such as
PID or LQR, the application of fuzzy logic is another way to achieve
to flocking behaviours on UAVs [21,22]. However, this requires an
adequate knowledge of the domain in order to design effective fuzzy
rules.

From the perspective of communication and control mode, there are
mainly two modes, centralized and decentralized method, which require
different control strategies. In the first communication mode, the con-
trol strategy requires a centralized master which is assigned to receive
the states of all agents, process and transmit control commands. The
main benefit of this approach is that developer can easily modify the
controller from master. However, from the system point of view, this
strategy is not robust because of the high reliance and heavy computa-
tion on the master.

In decentralized communication mode, agents can process their own
commands thereby reducing the computation cost on the master [23].
Nevertheless, it is well known in literature that one of the major bot-
tlenecks in decentralized algorithms is explicit communication. As the
number of agents in the swarm increases, the communication network
topology becomes more complex increasing the communication delays
and packet losses. This drastically affects the performance of the sys-
tems relying on them. One of the reasons for this is due to the limited
capability of the agents in the swarm and the need of the agents to have
enough information to estimate their own states as well as others for the
purpose of flocking. Undoubtedly, it puts forward a high requirement
for individual performance especially when considering cheap and low
computational cost agents. As a result, it becomes more advantageous
to make use of a coordination system that limits the need for explicit
communication and hence complexity [24].

Inspired by biology, previous work by Reynolds proposed a dis-
tributed behavioural approach in which flocking can be achieved with-
out the need for centralized communication and explicit communication
between agents [25]. The resulting decentralized swarm controller has
been extended by numerous researchers where they have showed that
even if the individuals cannot perceive the entire flock, a swarm consist-
ing of self-organized agents can still move as a flock through local infor-
mation interactions [26]. Taking inspiration from Reynold’s work, ex-
plicit communication was not required to achieve a flocking behaviour
in this work. Instead the visual perception of neighbours was applied in
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a flocking behaviour generator to achieve the components of flocking
namely cohesion, aggregation and heading alignment.

In [13], the challenges raised for multi-UAV cooperative transport
were highlighted. This included the need to explore energy optimiza-
tion and even energy distribution in multi-UAV collaborative transport
systems, the need to have a mechanism to decide how many multi-rotors
would be required to pick up a complex shaped objects based on their
mass distribution and shape as well as ensuring stability during trans-
port. Furthermore, [27] highlighted that a cooperative transport system
that is safe, scalable and able to perform agilely using only robotic vision
and local communication between neighbours is still yet to be found.

In this work, we present results that offer a roadmap towards provid-
ing a solution to the latter challenge identified in [27] while address-
ing the former challenges raised in [13]. In particular, our contribu-
tion lies in applying one of the tools in swarm engineering, a behaviour
based subsumption architecture, to address these challenges. The nov-
elty of our architecture is that it is able to achieve scalable decentralised
multi-UAV load transportation without the need of explicit communica-
tion between agents. In our architecture, coordination between agents
is achieved by using data from low cost monocular vision perception
and cheap ultrasonic sensors on each agent. Our approach enables in-
dividual agents to search for a load in an environment, attach to it via
suction cups and carry it to a desired destination cooperatively (Fig. 1).
During attachment to the load, the agents are distributed according to
the mass requirements of the load thereby ensuring that energy usage
is uniformly distributed among the agents. Furthermore, we show that
our approach is robust to disturbances thereby highlighting its ability
to ensure stability during load transport.

The rest of paper is arranged as follows: In the next section, we dis-
cuss the structure of our architecture in detail, including relative lo-
calization, the behaviours used in the architecture, mechanisms of be-
haviour fusion and load mass adapting cooperative transportation. In
Section 3, simulation results are presented to validate the robustness
of our strategy as well as its energy distribution properties. Finally, we
conclude and put forward some suggestions for future work in Section 4.

2. Methodology

In this section, we discuss the sensors and set up for the agents in
the swarm as well as the proposed subsumption architecture used for
decentralised cooperative transportation.

2.1. Single agent model

Each micro-UAV agent in the swarm is based on a Quadcopter. The
Quadcopter is equipped as shown in Fig. 2. A green sphere is used for
the identification of neighbours and self-localization within the swarm.
Ultrasonic rangefinder and proximity sensors are used to obtain bound-
ary environment information for obstacle avoidance while a monocular
camera is arranged in such a way that it obtains a panoramic vision of
the environment. In order to obtain the panoramic image, a convex mir-
ror was set upon the single monocular camera to obtain a 360-degree
vision. Furthermore, as shown in Fig. 3, the basic flight control of agents
is realized, in level 0, by a cascade PID controller involving position, ve-
locity and attitude controllers.

2.2. Subsumption architecture

In this work, a subsumption architecture is designed to implement a
decentralised cooperative transport by a swarm of Quadcopter agents.
Three different behaviours were chosen based on this goal: bacterium
behaviour, flocking behaviour and obstacle avoidance behaviour. The
bacterium behaviour was used for exploring the environment as well as
providing exploitation based on the profile of the load. The flocking be-
haviour provided the mechanism for cooperation between agents while
the obstacle avoidance behaviour enabled agents to detect and avoid
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obstacles in their environment. The three different behaviours make up
the combined behaviour module shown as @ in Fig. 3.

The subsumption system architecture was arranged in 4 layers. Level
0 contained the cascade PID controllers to provide attitude and altitude
control for the Quadcopters. Levels 1 and 2 contain the three different
behaviours mentioned above. These three behaviours are fused in the
velocity fusion module (® in Fig. 3). In level 3 (@ in Fig. 3), the col-
lective target tracking is performed in order to maintain formation
during the transportation of a load. The architecture also contains an
environment perception (@ in Fig. 3) module for perceiving the envi-
ronment. The specifics of this architecture are explained in detail in the
following sections below.

2.3. Low level controllers module

The low level controllers module is made up of a series of cascade
PID controllers, control mixer, motor control as well as GPS and IMU
sensors. The cascade PID controllers are responsible for low-level control
of the Quadcopters. It is made up of the position PID controller, the
velocity PID controller and the attitude PID controller. The position PID
controller accepts the desired destination position for the load to be
transported as well as the current position of the agent. The output is
then used as a velocity set point for the velocity PID controller. The
velocity PID controller outputs the desired yaw, roll and pitch angles
which is then used by the attitude controller. The control mixer takes
the calculated thrust for the altitude of the Quadcopter and Euler angle
rate as input from the attitude PID controller. It then outputs four motor
speeds for a Quadcopter. The changes in the condition of the Quadcopter
is then detected by the GPS and IMU module for feedback to the cascade
PID controllers.

2.4. Environment perception

The environment perception module represents all the abilities that
an agent uses to obtain information from the external environment.
Agents can obtain range information around themselves and height of
the load by proximity sensors and an ultrasonic sensor respectively. This
information feeds into the obstacle avoidance behaviour and bacterium
behaviour respectively. Furthermore, we use a panoramic camera on
each agent to obtain relative coordinates w.r.t. the camera coordinate
of their neighbours in the swarm by tracking green sphere on the top
of each neighbouring Quadcopter. The following sections discuss this in
more detail.

2.4.1. Object recognition for relative localization

Relative localization is a prerequisite for swarm clustering [25]. Most
of the on-board relative localization techniques use a monocular camera
and mounted distinguishable markers. For instance, Saska et al. used an
on-board real-time reformative flood-fill algorithm and a simple circular
pattern composed of concentric black and white circles of known diam-
eters to achieve relative localization [28]. ArUco markers were used by
[29] on the leader to obtain relative position while [30] realized leader-
follower drone formation flying by equipping the leader with a unique
colored ball. In the processed monocular vision image, the ball occu-
pies a number of pixels that can be used to extract relative distance and
bearing using the radius of the ball. This strategy is resilient to boundary
partial occlusion, boundary object segment and image distortion at the
edge [30].

In this work, a similar technique to [30] was applied. A green sphere
was used as a significant marker to represent each agent. Since the plane
projection of a sphere at all directions in space is approximately circu-
lar, even under the case of distortion, this approach produces more ro-
bust results. Histogram equalization and Gaussian spatial filtering were
applied to the raw image to improve image contrast and immunity to
noise jamming of images. After that, global thresholds from D, to
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D,,.x were used to achieve binarization and extract interested areas as

in Eq. (1) where, I(x, y) is the processed image output.

I(x, y) - l7ifDmin < I(x, ,V) < Dmax (1)
0, else

Morphology processing was then applied to eliminate ambient light
in-homogeneity. The above resulted in the detection of the ball in the
monocular image from which the estimation of the relative positions of
the neighbours was obtained.

2.4.2. Bearing and distance estimation for relative localization

Extracting distance and bearing estimation to objects in the real
world requires us to determine a relationship between a detected im-
age and the real world.

An intuitive approach is to compare landmark radiuses in images
with that of the real world by applying generalized Hough Transform
for geometric pattern detection [28]. However, this approach demands
considerable on-board computation. Furthermore, the results of Hough
Transform are extremely deterministic which means there is no compro-
mise in testing whether patterns exist or not in an image. Thus, due to
distortion and noise present in the camera, Hough Transform may give
unstable results. This could negatively impact the inputs to the flock-
ing algorithm resulting in destabilization of swarm formation. To avoid
this, we used landmark average pixel intensity of connected regions to
obtain the depth information of a target object. This approach provided
immunity against noise [30,31].

By applying binarization as a prerequisite procedure for connected
region detection, we were able to extract the average pixel intensity of
the connected components as N;. Using a speculative relationship F(x)
between pixel intensity and depth information, we estimated the relative
distance between agent n and agent i.

The relative bearing of neighbours from each agent » is estimated
by the relative distance from the image plane centre of agent n, to the
centroid position of the detected neighbour i on the image plane. Where
(x¢, ¥°), denotes the image plane centre of the nth agent, and (x;, y;),, de-
notes the centroid position of detected neighbour i from the nth agent’s
perspective.

We establish a spherical coordinate system given by p; = (6;, ¢;, d;)
which represents the relative location of the ith neighbour in the current
distributed agent i’s polar coordinate system. S, is used to record local
positions of all the neighbours of the nth drone where 0 is the relative
pitch angle to a neighbour and ¢ is the relative yaw angle to a neighbour.

The above is captured in a relative localization mapping from image
plane to the polar coordinate system as

0, 6, 0;
S, = [Pl Py Pi],, =l 92 @
dy  dy d; |,
K, 0 0 ||x;—x, x,—2x, X; — X,
=|0 Ky 0 Y1 —Ye Y2 = Ye Yi— Ve
0 0 F®| N N, N, |,
6, €10.22). ¢, € [-7. 7)., €RY @)
where

=221 xnyl 1=F(Ni) (3)
X Y

where the K, and K, are constant parameters that depend on camera
intrinsic parameters and as such affect the calculation of the relative
bearing. The values of these parameters were determined empirically.

. K 27 /R
For the panoramic camera used, we chose ) = 7/ Ry , where
K, z/2R,

R . .
< R") denotes the image resolution.
y
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2.5. Combined behaviour

In order to derive a swarm that searches and explores an unknown
environment cooperatively, we propose that several behaviours should
be running concurrently: (i) flocking behaviour for maintaining swarm
formation, (ii) bacterium behaviour for searching and exploring the en-
vironment, and (iii) obstacle avoidance for avoiding collisions with the
environment and other agents. As mentioned previously, the subsump-
tion architecture provides a mechanism to derive a desired global be-
haviour through the fusion of several sub-component behaviours. The
following sections describe the three chosen behaviours in detail and ex-
plain how their corresponding velocities were obtained in preparation
for a fusion strategy in ® of Fig. 3.

Furthermore, we subsume behaviours depending on conditions in
the environment. For example, the bacterium behaviour is used for ex-
ploration and searching the environment. This behaviour is subsumed
by the obstacle avoidance behaviour if a neighbour is detected in very
close proximity. In this case, the obstacle avoidance behaviour causes
the agent to accelerate away from the neighbour in order to avoid them.
On the other hand, the agent should be unconcerned about neighbours
that are far away since they have no immediate threat.

As a result, we split an agent’s surrounding area into three zones
(Fig. 4): near zone, mid zone and far zone. If the drone detects any
threats in the near zone, i.e. other neighbours and obstacles, it will dis-
regard any other behaviours and trigger obstacle avoidance behaviour
directly. The near zone control is set as the highest priority layer in the
subsumption architecture. Neighbours in the far zone are ignored partly
because they are not an immediate threat and also because they are
not detected due to the camera’s resolution. The flocking behaviour is
applied at the mid zone where neighbours begin to be detected by an
agent.

2.5.1. Flocking behaviour generator

The flocking behaviour of our swarm utilizes three rules. The
three rules are separation, cohesion and friction which denote repul-
sion, aggregation and viscous friction-like interaction terms respectively
[32,33]. The first two terms encourage agents to hold a certain distance
from each other while avoiding collisions with each other. And the last
term restrains attitude oscillations as the swarm seeks a steady state. We
define a set of agents ™, that contain all the neighbours surrounding
the nth agent in the mid zone:

S'r,nid = {agem‘s iti#n /\dmin NEARS dmﬂx} 4
where d,;, and d,,,, indicate the upper and lower bounds of the defined
mid zone.

In order to simplify the calculation in every iteration, we introduce
a virtual agent coordinate vector corresponding to the mid zone neigh-
bours set $™“ of the nth agent [34]. Thus the flocking velocity compo-
nent is given by

k

p.
v = k. pulrtual S‘IZP i
S ISl e ol
”ﬁ"h = kmhpzzrtual |S'Z?:” z Pi (5)
0 jesmid

where k,, and k., are predefined constant separation and cohesion
gains. p is the approximate relative speed calculated by position differ-
ence between adjacent frames during relative localization of neighbours.
As mentioned previously, the velocity based friction term was intro-
duced to dampen the vibrations of an agent attempting to reach a steady
state rapidly.
This term is given by
virict f”” Z pl (6)

=k, . pvir'tual -
SrictPy |S"”d||0 et
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where k., is a friction gain that influences the intensity of the damp-
ening effect. Thus, the flocking term observed by swarm is

S — ,,5ep coh [frict
v, =v,+v," +v, (@)

Changing parameters k
swarm.

and k., adjusts the flocking density of the

sep

2.5.2. Bacterium behaviour generator

In an unknown environment, in order to find a target object and
adapt to its density distribution, individuals in a swarm need to search
and explore the unfamiliar area as well as apply a strategy to conform to
the target object’s distribution once found. Towards this, the chemotaxis
behaviour in bacterium foraging serves as an inspiration. Bacterium for-
aging is an example of an adaptive composite search strategy that can
explore an extensive region and perform priority based searches based
on food profile distributions [35-37]. From an agent’s perspective, the
chemotaxis behaviour consist of tumble and run phases [38,39]. The
tumble phase is a decision-making procedure in which the agent rotates
itself and finds a random orientation for the next movement. The run
phase is a migration process where the agent moves towards favourable
gradients.

In this work, we apply the Berg and Brown mathematical model
[40] to achieve bacterium foraging behaviour. This model describes the
behaviour of a bacterium as it searches an area for food and adapt its
search according to the concentration distribution of the food profile.
This model has been successfully applied for the purpose of environ-
ment profile perceiving by Oyekan et al. [41] and is described as:

«()
T=19€ \ ¢ ®)
ap,  _, ' dP, ‘=
9 _ b dr
= e o
ap_ ke dC a0
2
(kg + Cx)” @
b Bo
_ . 11
Unl T e X + 1 an

where 7 is the mean run time, and 7, is the mean run time in the absence
of concentration gradients. z,, is a time constant that presents a transi-
tory memory for a single agent thus giving them knowledge about the
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Fig. 4. Zone definition with affected be-
haviour regions.

past conditions in the environment in the last 7,,. P, shows the fraction
of the number of chemical particles bound to the bacterium’s chemical
receptor. Besides,% and % represent the change of chemical percep-
tion with dr and the average change of chemical perception during ,,
respectively. In this work, we use detected relative depth values of the
load profile as C. The depth values were obtained by the ultrasonic sen-
sor at the bottom of each Quadcopter.

[vh| is the absolute bacterium behaviour velocity of an agent. f,
shows the highest speed of foraging for an agent and determines the
basic velocity of the agent. An agent achieves the highest speed when it
is searching an area without food, that is where concentration is equal
to zero. k, is a constant and positive value, representing the amplifica-
tion factor for food concentration and it is used to tune for the impact of
food concentration. C(x(¢)) is the concentration at the current location
and time varying from O to the infinity.

Upon analysing the equations above during run phases for an agent,
the phase length is constantly changing over time since the concentra-
tion is changing. Equations (12) and (13) show that the first derivative of
the run phase w.r.t time reduces and increases depending on the deriva-
tive of the receptor binding rate.

dPy
— =rqpae’ d X —(—) (12)

dPp, dPp, tdp, ‘=
4 () Tm_l ) —1_1/ Lo ar
dt\ dt dt "o J_s dt
-—) 13)

In other words, the average value of the receptor binding rate tracks

the current value of C and so the sign of % (%) is consistent with %.

As a consequence, the agent will use a higher frequency of run phases if
it is moving towards an optimal of the food profile (VC(x(1))) or initiate
more tumble phases if it is moving in the opposite direction (-VC(x(7))).

2.5.3. Obstacle avoidance behaviour generator

In this work, we use artificial potential field method [42] to generate
a repulsion velocity field for obstacle avoidance. By using Force Inducing
an Artificial Repulsion from the Surface, the repulsion velocity increases
significantly as the proximity with an obstacle decreases. This is shown
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as

1 1 1 adp
V”=#<———>——,ifllpll< Pol| = dni (14)
P ool 010 < 0l =
where y is a constant gain and ‘;—’: denotes the partial derivative vector
of the distance from a point on an agent to an obstacle.
dp dp dp dp T
=22 %] as)
In the near zone, there is only the obstacle avoidance behaviour act-
ing. As a result, this causes agents to disperse rapidly without being
restricted by the cohesion term in the flocking behaviour.

2.6. Velocity fusion

The Velocity Fusion module (® in Fig. 3) was used to fuse the veloc-
ity values generated by the three behaviour algorithms, flocking, bac-
terium and obstacle avoidance. The output of the velocity fusion mod-
ule acts on the velocity control loop of the agents. The main idea of
this fusion algorithm is: (i) to provide a mechanism to tune the trade-off
between behaviours respectively, (ii) to eliminate undesirable cluster
driving forces in the swarm and (iii) to accelerate convergence while
keeping the swarm’s topology to match with the profile and mass distri-
bution of the load.

This was achieved by summing up the three velocities as v} according
to

v = vZ + v{: +v) (16)

where v, v/, and v9 represents bacterium, flocking, and obstacle avoid-
ance behaviour velocities respectively.

However, in this work, when there was a spacious environment and
a comparatively small load, we observed that though part of the swarm
found the load first, the agents can be pulled away from the load by
other agents under the influence of the cohesive term in the flocking
behaviour. This is especially true if the visible neighbours are operating
on the edges of the detected load.

To address this, we introduce a parameter k /.., (See Algorithm 1)

Algorithm 1 Decentralised Load Searching and Mass Adapting Algo-
rithm.

Input: The flocking behaviour velocity, v-,f ;The bacterium behaviour
velocity, VZ ;The obstacle avoidance behaviour velocity, v%;The cur-
rent situations of proximity sensor and ultrasonic sensor, s,", s/,
si"°* =True means there are obstacles around the agent, s*/" =True
means agents have reached the target object;

Output: Fusion behaviour velocity, v?;

1: while True do

2. if s is True then
Obstacle detected, v} = v9
goto final

else if s/ is True then
Target detected, v = V% + k f/pesingVh

else
Continue searching, v’ = v* + v

end if

10: final

11: return vy

12: end while

© ® N D oAw

which adjusts the impact of the flocking behaviour once a load is found.
By using this strategy, high speed chemotactic agents operating on the
boundary will have a reduced impact on agents who are already oper-
ating above the target load. Nevertheless, as members in a swarm, the
agents operating on the load will still have an impact on their visible
neighbours by attracting and pulling them into the load area with the
cohesive term of the flocking behaviour. By following this strategy, the
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time needed for converging on the load is reduced. The pseudo code
for the searching strategy for every agent is described in Algorithm 1,
where the parameter k s,.4;,, has a range of between zero and one.

2.7. Collective target tracking and cooperative load transport to a location

The load to be transported is assumed to have the following proper-
ties:

e It is made up of a homogeneous material that can be detected by the
sensing modalities on the Quadcopter. For example, if the sensing
modality on the Quadcopter is a laser, then it is difficult for a laser
to detect a load made of glass.

The density of the material is uniform all over the load. Since Mass =
Density * Volume, the mass of the sections of a load are determined
by the volume and by consequence the shape or dimensions of the
section.

Using the last assumption, it means that the load to be transported
can take any arbitrary shape as defined by the user and our scheme
will work provided that the load shape can be detected by sensors
on the Quadcopter for subsequent transport.

During collective transport, it is crucial to maintain formation in or-
der to avoid collisions between agents. Due to the decentralized design
of the flock, we assume each agent has a predefined destination coor-
dinate stored onboard. We input this as a desired coordinate command
directly into the position controller of the subsumption architecture of
each agent.

As mentioned in the last subsection, the implemented mass adapt-
ing exploration obtains a distributed and optimized relative position for
each agent that satisfies the mass distribution on the load. In order to
reduce onboard computation cost, these relative positions are used by
every agent as a reference signal to maintain their position in the swarm.

In the level 3 of subsumption architecture, these distinct relative po-
sitions and the specified destination coordinates are transferred to the
collective target tracking module (@) on each agent for use to track and
calculate the corresponding velocity commands.

3. Experimental results and discussion

In this section, we present the results of the performance of our ar-
chitecture discussed in Section 2. The effectiveness of our strategy in
cases of carrying various shapes of objects is evaluated in several sim-
ulation scenarios using six Quadcopters. It is important to emphasise
that even though we used six team mates in our simulations, our pro-
posed strategy can be scaled up to multiple team members. We examine
how different parameters of our architecture’s algorithm affect the load
mass adapting strategy (non-uniform swarm network) and compare its
performance with non mass adapting strategy (uniform topology swarm
network). In order to compare both strategies, we study their robustness
to noise as well as their energy consumption during operation.

The simulations are run in the robot simulator CoppeliaSim and ROS
environment (Robot Operating System). The Quadcopters used in the
swarm are based on the AR.drone2.0 designed by Parrot and can be
found in CoppeliaSim. Additional grasping mechanism, visual sensor
module, proximity sensor module, ultrasonic sensor and a significant
landmark for identification are added to each Quadcopter. The spher-
ical vision sensor mounted on the Quadcopters provide raw images of
1024x256 pixels. The proximity sensor can detect 0.5m range around
it to avoid collision while the ultrasonic sensor has a maximum sensing
range of 20 meters and provides the relative height of objects below the
agent.

In the actual design, the Quadcopter is built of carbon fiber tube
and weighs approximately 520g. The onboard autopilot is custom de-
sign including Linux built 1 GHz 32 bit ARM Cortex processor with
800MHz video DSP, 1 GB DDR2 200MHz RAM, 3 axis gyroscope, 3 axis
accelerometer, 3 axis magnetometer, pressure sensor and ultrasound
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sensors. Our distributed controllers communicate with CoppeliaSim via
ROS by sending propeller rotation speeds to rotors for control.

Our results and analysis in this section is mainly divided into three
parts: performance of convergence onto various load profiles, coopera-
tive transport of loads and evaluation of robustness of our strategy.

3.1. Converging on load objects

3.1.1. Converging on various load profiles

In order to test the performance of our approach to converge onto
various load profiles, we selected several representative shapes includ-
ing convex and concave. The shapes were rectangle, peanut and the
letter “L” shape. The purpose here was to establish that our proposed
strategy was capable of converging onto various load shapes. The results
are shown in Fig. 5. In all the scenarios, robots begin with completely
random positions in an unknown environment. Under the action of bac-
terium chemotaxis and flocking behaviour, the swarm finds and adapts
to the mass distribution of the detected load.

In order to measure the adaptability of the swarm to the load mass
distribution, the Kullback Leiber value, which is popularly applied in
estimating similarity between two distributions [41], is proposed as cri-
teria. The lower the KL divergence value, the closer the distribution of
the swarm is to the mass distribution profile of the load.

Jo=- 3 3 s plog (5=2) a7
2P SGey)

S(x,y) represents the load mass distribution in a certain rectangular
area A(X,Y), that is slightly larger than the object; F(x, y) denotes the
normalized population density distribution of the swarm, achieved by
calculating the number of drones per meter around each location in
A(X,Y). At the beginning of a simulation run, the KL distance is large.
This is because the aerial robots in the swarm are randomly placed in
the environment resulting in differences between the swarm population
distribution and the target load mass distribution. As seen in Fig. 5, dur-
ing simulations, the swarm distribution converges rapidly to the load
mass profile, and eventually maintains a small value. The results con-
firm that our strategy can be applied to various load profiles and not
limited to only convex objects.

3.1.2. Converging with different gains

For complex load profiles with irregular surfaces, the mass adapt-
ing topology of the swarm can be adjusted by changing the param-
eters of our algorithm. For example, as discussed in Section 2.6, our
Algorithm 1 implements a k ;/,.4;n g2in in line 6. This gain can be used
to adjust the impact of the flocking behaviour once a load is found.

Figure 6 highlights the comparison results of when & /,;,, = 1 (that
is O k 7o.k;n, adjustment when the load is found) versus k s/, = O
(that is k 7.4, adjustment when the load is found) when applied to a
rectangular target load. As seen in the results, the approach of adjusting
k £10cking when a load is found is effective in increasing the convergence
rate to the load’s profile. It is also effective at adapting more closely to
the profile of the load.

In order to further investigate the effects of varying k /.4, gains
on the mass adapting swarm topology and the KL divergence values,
we used a peanut shape target load. Initially, flock members are ran-
domly distributed in the environment to start searching and exploring
for the load. This results in an initial KL divergence value 25. We tested
K f10cking gains of 0, 0.05 and 0.15 with results in Fig. 7 showing that as
k r10cking 821N increases, the convergence rate increases and the KL diver-
gence cost also increases. The effect of increasing the k ;,.4;,, gain can
be seen more visually in Fig. 8. It can be seen that the swarm’s topology
adapts more closely to the peanut shape when the k ;/,;,, gain is set
to 0.

It should be noted that even when the k 7,4, gain is set to 0 and nul-
lifies the flocking velocity behaviour, the obstacle avoidance behaviour
will be activated if a collision between agents is imminent. The obstacle
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avoidance behaviour prevents collision and leads to separation between
the agents. The obstacle avoidance behaviour is also instrumental in re-
pelling agents to explore other areas on the load while the bacterium
behaviour drives agents to individually find an optimal on the load pro-
file leading to the aggregation of agents. Furthermore, the movement
of the agents is influenced by the profile of the load leading to mass
adapting (see Eq. (10)). As a result, a k y/.4;n, g2in of 0 leads to lower
KL divergence values.

The combination of the effects of aggregation (provided by bac-
terium behaviour) and separation (provided by the obstacle avoidance
behaviour) causes a form of flocking to occur over the load profile even
though the k ;.4 gain of the flocking behaviour is set to 0. Neverthe-
less, this does not mean that the flocking behaviour has no relevance
when adapting to the profile of a load. It is instrumental in recruiting
other agents to the load once found as well as providing structure to the
swarm topology in the presence of the random nature of the bacterium
behaviour. As such, having the ability to tune the k ;/,4;,, gain ensures
that we have some level of control over the swarm structure.

3.2. Cooperative transportation

In the last section, we presented the effectiveness of Algorithm 1 in
converging to the profile of a load whereas in this section, the re-
sults of the cooperative transport of the load are presented. In order to
demonstrate the necessity and advantage of applying load mass adapt-
ing swarm topology for cooperative transport, we compare the results of
two sets of experiments. In the first experiment, a uniform swarm topol-
ogy is used to transport the load while an load mass adapting topology
is used in the second experiment.

3.2.1. Load collaborative transport

As discussed in the methodology section, the swarm executes collec-
tive tracking in which each agent maintains their relative distance to
each other. At the beginning of the simulations, agents are placed ran-
domly in a simulated square arena that has a dimension of 20meters by
20meters. After converging to the load, the agents descend and attach
to the load via a vacuum suction cap held at the end of a cable. The load
is then lifted to 1.3 meters above the ground. Subsequently, the swarm
performs the collective tracking operation by carrying the load to the
destination (Fig. 9) where the payload is released.

The individual positions of the agent in the swarm and hence the
topology distribution when they converge on the load is obtained
by Algorithm 1 prior to load attachment. After attachment to the
load, the agents collaboratively transport the load to a desired co-
ordinate. Figure 10 shows the trajectories for the agents executing
Algorithm 1 prior to attachment to a peanut and a rectangle shaped
load as well as during the collaborative load transport to a coordinate.
The ability of the collective tracking module (@ in Fig. 3) in keeping
agents at their relative positions in the swarm can be seen in Fig. 10.
Figure 9 also shows the swarm topology during collaborative load trans-
port to the desired coordinate position. It should be noted that the col-
lective tracking module maintains the relative position between agents
without communication between the agents.

3.2.2. Energy comparison

In this section, we discuss how a mass adapting swarm topology im-
pacts the energy consumption of individuals in the swarm. Towards this,
we make use of an uneven load as shown in Fig. 11. We tested three
scenarios: (i) uniform swarm topology with power restrictions placed
on the agent; (ii) uniform swarm topology without power restrictions
placed on the agent and (iii) mass adapting topology with power re-
strictions placed on the agents. We shall now discuss each scenario in
turn.

Uniform swarm topology with power restrictions placed on the
agent: We commanded the agents to lift a load to an altitude of 1.3m
as seen in Fig. 11. It is seen in Figs. 11a and 12 b that the agents could
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Fig. 5. Converging of the swarm to various shapes where K, ,, = 0.

not lift the load to the desired altitude. The energy consumption of each
of the agents is shown in Fig. 12a where it can be seen that the power
usage of each agent varies depending on where they are attached on the
load. In this experiment, we restricted the amount of thrust that each
motor on the drone can generate. The limitation was informed by the
physical parameters of the Parrot Drone. Two important power values,

no-load and maximum power, were used during our analysis. The no-
load power represents the maximum power required by agents to hover
steadily without any payload, while the maximum power is the upper
limit on the motors. It can be seen in Fig. 12a that Drone, and Drone;
reached the maximum power while Drone, and Drones; were below the
no-load power value.
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Fig. 8. Converging performance on a peanut

shape load, under various k ;;,.,,, values.
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Fig. 12. In Uniform topology, power on each Quadcopter varies depending on where they are attached to the load. The Quadcopters are not able to lift the load.
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Fig. 13. Power on each Quadcopter and their height in uniform topology scenario. Energy distribution is uneven and the Quadcopters lift the load.

Uniform swarm topology without power restrictions placed on as the batteries of each agent. Furthermore, by comparing the power
the agent: By removing the power limitations on the motors of each usage of the mass adapting swarm topology versus the uniform swarm
agent, it can be seen in Fig. 11b that the agents were able to lift the load topology without power limitation, it was discovered that the power
to the desired height. However, to achieve this, the power usage of two usage of the mass adapting topology is lower (Fig. 15). From the above
of the drones (Droney and Drone,) had to unrealistically go above the results, it can be concluded that uniform distribution formation demands
maximum power capabilities of the motor (Fig. 13). In this case, these a higher energy usage from the swarm.

two drones were doing majority of the heavy lifting.

Mass adapting topology with power restrictions placed on the
agents: We then deployed our mass adapting strategy as seen in Fig. 11c.
With our strategy, the agents were able to lift the object with a more
uniform power usage that is below the maximum power limitation of
the motors on each agent (Fig. 14). When considering physical wear and
tear, this approach is more likely to be gentler on the motors as well

3.2.3. Robustness comparison

We then analysed the stability of the mass adapting swarm topology
to external disturbances. In order to introduce disturbances, we make
use of a simulated wind tunnel in CoppeliaSim.

The wind from the wind tunnel is simulated by small particles that
are generated randomly and propelled from the wind tunnel. The swarm

12
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system is then placed in the wind tunnel (Fig. 16) where a steady distur-
bance is exerted on it. The system’s robustness can then be analysed and
inferred by observing the sensitivity of the entire system to the external
disturbances [43]. In the previous works, the stability of a load carried
by agents is analysed via precise dynamic modelling due to the load be-
ing carried at pre-defined and known connections [44,45]. In our case
however, the swarm formation and the points of connection to a load is
unknown prior to the load being lifted. As a result, we use kinetic energy
of the load as a metric to infer the robustness of the swarm system to
disturbance. The kinetic energy of the load was obtained according to:

1

_ 2 — 2 —
Erranslation = Emv ’ Erotarion = EJw ’ Ekineric =E +E

rotation

(18)

translation

where m and J are the mass and the moment of inertia of the load; v
and o are translation and rotation velocities of the load. A higher load
kinetic energy means that the robustness of the system is low and vice
versa.

In order to further investigate the robustness of the mass adapting
swarm system, we tested how cable length and cable angle affects the
kinetic energy of the load when it is lifted. Towards this, we introduce
a scaling factor that expands and contracts the swarm by increasing and

500

13

550 600

reducing the distance between individual members respectively. Firstly,
the swarm lifts the load and then expands by a scaling value so that the
cable angle can increase while keeping the swarm’s distribution accord-
ing to mass.

As a result of the above, the cable length and swarm scaling values
are selected as independent experimental variables while the kinetic en-
ergy of the load is the dependent variable (Fig. 17). The experiments
begin from a static state, after which disturbance is added for a period
of time (60s) and the kinetic energy of the load obtained.

We also define two swarm scenarios: dynamic and non-dynamic.
The dynamic scenario is a situation in which the swarm is influenced
by the load’s oscillation and corresponding vibrations in the cable
when the system is under external disturbance. The non-dynamic sce-
nario is an ideal situation, where the agents in the swarm are not af-
fected by the vibrations in the cables and the oscillations of the load.
We conducted experiments to compare the influences of cable length
and cable angles (through swarm scaling) in these scenarios in or-
der to derive the key principles for achieving load stability during
transport.

Experimenting with swarm scales: In the experiments of how
swarm scales affect the robustness, dynamic and non-dynamic swarm
scenarios are loaded into the wind tunnel respectively with various scal-
ing values. As shown in Fig. 18a, the robustness of the system is reduced
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Wind tunnel

Fig. 16. Robustness evaluation by wind tunnel disturbance.

Fig. 17. How cable lengths and swarm scales
influence system stability.
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Fig. 18. Robustness comparison of different scales in dynamic swarm and non-dynamic swarm. The red stars in the error bars show the average kinetic energy while
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Fig. 19. Robustness comparison of different cable lengths in dynamic swarm and non-dynamic swarm. The red stars in the error bars show the average kinetic
energy while the blue bars show the variance of the kinetic energy over 60s. (For interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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with the expansion of the swarm in the dynamic scenario. However, we
observe the opposite results in non-dynamic scenario, where the robust-
ness is improved by the expansion of the swarm (Fig. 18b).

The reason for these results is that the larger values of the scaling
factor leads to larger angles between the cables and the load. This in-
creases the tension on the cables (Fig. 20) which dramatically affects
the Quadcopters attitude in the dynamic model and makes them unsta-
ble. While in the non-dynamic model, the Quadcopters are consistently
stable, so that the load is pulled and holds steadily.

Experimenting with cable lengths: In the dynamic scenario, we
observed that the load-suspended system has less kinetic energy and is
hence more robust when a longer cable is used (Fig. 19a). When the
load is affected by disturbances, its motion characteristics is oscillatory
and similar to that of a simple pendulum. The oscillation frequency
is higher in a system with shorter rope lengths. In the dynamic sce-
nario, this requires the drone to make demanding fast attitude adjust-
ments; whereas with longer cables, low-frequency oscillations occur and
the load has lower kinetic energy or better robustness (Fig. 21). How-
ever, in the non-dynamic scenario, the opposite results are observed
(Fig. 19b). As cable length increases, the kinetic energy of the load
increases.
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Fig. 20. Visual representation of how swarm
scale affects robustness.

tension along cable

vertical tension < tension along cable

(b) expanded swarm

4. Conclusion and future work

Ensuring stability, robustness and even energy distribution among a
team of Quadcopters are some of the pressing challenges during coop-
erative transport of complex loads [13]. Inspired by swarm robotics,
we have presented a behaviour based subsumption architecture that
achieves load mass adaptive cooperative transport by a swarm of Quad-
copters. Our strategy is able to ensure robustness to noise and even en-
ergy distribution between agents. Furthermore, our architecture is able
to accelerate the converging to various load mass distributions without
prior knowledge.

The subsumption architecture is based on the combination of three
behaviours: flocking, bacterium and obstacle avoidance. The choice of
these behaviours was based on the desired goal of the swarm. The flock-
ing behaviour enabled agents to move cooperatively while avoiding col-
lisions with each other. The bacterium behaviour provided agents with
the capability to explore an environment in search for the desired load.
Once the load is found, the bacterium behaviour enables the agents to
adapt their motions based on the profile of the desired load. The obstacle
avoidance behaviour prevents collisions from happening with objects in
the environment including the agents themselves.



K. Huang, J. Chen and J. Oyekan

Sharter cable &
High frequency

Larger cable &
Low frequency

disturbance

A%

Fig. 21. Visual representation of how cable length affects robustness.

The resulting swarm is decentralized and does not use explicit com-
munication between members. Instead it uses vision as well as proxim-
ity sensors to achieve cohesion, separation and obstacle avoidance. The
swarm is able to adapt to the profile (mass distribution) of a detected
load resulting in a mass adapting swarm topology. By applying a suc-
tion mechanism, the swarm is able to grab the load and carry it to a tar-
get location while maintaining the load profile topology. Through sim-
ulation results, we demonstrate that our load mass adapting approach
conserves more energy during transport than an approach in which the
swarm maintains a uniform topology. During our experiments, we dis-
covered that if the load’s profile is smaller than the footprint of the
swarm, some members of the swarm will be repelled away by members
already on the load. The repelled members then keep exploring the en-
vironment for other loads. This highlights the potential for our approach
to automatically assign the appropriate number of individuals to a load’s
transport depending on the need. This will be explored further in future
work.

Furthermore, we show how the length of cables used as well as the
cable angle between the load and the agent impacts swarm system ro-
bustness during load transport. Through the use of a kinetic energy met-
ric, it was discovered that longer cable lengths and smaller angles im-
prove robustness of the swarm system.

Since in this work, we assumed a load of uniform density through-
out (that is a load made of a homogeneous material through-out), future
work should look into how loads of varying densities (heterogeneous
materials) can be effectively transported using a swarm of cooperative
agents. Furthermore, investigations should be carried out into how real
time dynamic adjustments of cable lengths during disturbances could
further improve swarm stability and robustness. This is particularly im-
portant when dynamic load shifting during transport (e.g transporting
fluids) is taken into consideration.
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