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a b s t r a c t 

Cooperative transport by a swarm of Quadcopters offers more flexibility and performance when carrying loads 

that are complex in structural profile and mass. Ensuring that team members of the swarm are optimally placed 

on these loads as well as able to resist disturbances from the environment during transport are current research 

challenges. In this paper, we present a decentralized behaviour based subsumption architecture for enabling a 

swarm of Quadcopters to explore an unfamiliar area, find a load and transport it to a target location cooperatively. 

In the architecture, three behaviours were used: an obstacle avoidance behaviour to avoid collisions with objects 

in the environment, a flocking behaviour to ensure swarm structure and a bacterium behaviour for exploration 

of the environment and to adapt to the mass profile of various detected loads. 

By adapting to the mass profile of a detected load, we show that our architecture ensures even energy distribution 

among Quadcopters while achieving robustness to disturbances from the environment. Our results show that a 

mass adapting swarm is able to conserve energy during payload transportation when compared to a swarm that 

does not adapt to a load’s profile. Furthermore, we do not use explicit communication between team members 

but instead rely on data from visual sensors attached to the Quadcopters. We experiment with simulations in a 

physics informed robot simulator called CoppeliaSim and demonstrate the effectiveness of our architecture when 

utilized for cooperative transport of irregular loads. 
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. Introduction 

Rotary aerial robotic systems can provide increased efficiency and

roductivity in many sectors [1] . Due to their excellent control perfor-

ance and convenience of vertical take-off and landing, rotary aerial

obotic systems have gained widespread adoption in various sectors such

s cargo carrying, package delivery and warehousing management. In

rder to cope with increasingly complex and varied load transport sce-

arios, the capability of a single robot can no longer meet many require-

ents ( Fig. 1 ). Thus, the current consensus is that multiple agent sys-

ems can offer an increased performance on flexibility, robustness and

ayload weight when compared with one single capable robot [2,3] .

hrough cooperation of multiple individuals, larger loads with complex

hapes can be transported. Nevertheless, the coordination and control

f multiple aerial vehicles raises challenges that have to be dealt with.

n literature, there are two prevailing approaches to tackle these chal-

enges: (i) mathematical approaches that rely on modelling and optimi-

ation as well as (ii) nature inspired approaches that rely on the advan-

ages of swarm robotics. 
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Mathematical modelling based approaches offer tools that can be

sed to model systems and guarantee stability as well as robustness to

isturbances. Leader-follower formations are one of the simplest mul-

iple agent schemes for transporting loads and they are often a start-

ng point for model based approaches [4–6] . A leader follower forma-

ion was used in [5] to transport a cable-suspended beam load by two

erial vehicles. This approach made use of mathematical modelling to

erive a decentralised communication-less master-slave admittance con-

roller. In their approach, the leader used implicit communication via

able forces to guide the system to a destination. A similar approach in

7] used visual feedback to maintain the relative position between the

eader and the follower. 

In [8] , micro-UAV controllers were derived for transporting a prior

nown load configuration. An extensive system identification process,

ncluding a knowledge of the load’s effect on cable tensions, was used

n order to derive the parameters for the model. Furthermore, they re-

ied on the use of globally available state data to inform the position

f agents participating in the load transport exercise. This technique

ould be extended to more complex scenarios in which a load with an

nknown mass distribution is to be transported. However, this would
 (J. Chen), j.oyekan@sheffield.ac.uk (J. Oyekan). 

 July 2021 

https://doi.org/10.1016/j.swevo.2021.100957
http://www.ScienceDirect.com
http://www.elsevier.com/locate/swevo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.swevo.2021.100957&domain=pdf
mailto:khuang5@sheffield.ac.uk
mailto:jchen118@sheffield.ac.uk
mailto:j.oyekan@sheffield.ac.uk
https://doi.org/10.1016/j.swevo.2021.100957


K. Huang, J. Chen and J. Oyekan Swarm and Evolutionary Computation 67 (2021) 100957 

Fig. 1. A swarm transporting a load cooperatively by adapting to the load’s 

mass. 
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equire even more nontrivial complex modelling in order to guarantee

he best micro-UAV configuration for transporting various loads [9] . In

rder to deal with different load masses of linear deformable objects

e.g cables, ropes), [10] applied the particle swarm optimisation and

uzzy logic in searching for the optimal parameters to apply to PID/PD

ontrollers on micro-UAVs for a smooth, fast and reliable behaviour.

hrough a model of the system, the states of the cables and the required

ehaviour from the micro-UAVs was derived. 

However, the modelling approach that couples micro-UAVs to loads

akes it challenging to extend such systems to even more varying load

cenarios and varying numbers of micro-UAVs. Towards expanding to

arger numbers of micro-UAVs and generic loads, [11] modelled each

ubsystem (Quadcopter and load) independently with interactions be-

ween them represented as force and moment transfers. The advantage

f this approach is that it can be scaled on demand to varying situations.

urthermore, their approach was able to ensure that the load mass was

venly distributed among the agents during transport. This was achieved

hrough the use optimisation techniques to derive parameters for the PID

ontrollers used in their scheme. 

Even though the above approaches are susceptible to errors in mod-

lling, when done correctly and with the right assumptions made, they

re very robust to external disturbances. In order to tackle these mod-

lling challenges, perhaps the use of machine learning techniques, such

s neural networks and Reinforcement learning, could be used for sys-

em and controller identification purposes [12] . However, this intro-

uces the need for extensive data collection and training. 

In addition to stability and robustness, energy distribution and man-

gement among a team of micro-UAVs is important during collaborative

ransport. This is an area that still requires more detailed research [13] .

he management of energy in multi-UAV collaborative transport is im-

ortant since power failure in one of the micro-UAVs can result in the

ailure of the whole operation. This is even more important when con-

idering mathematical based approaches since it is difficult to model un-

redicted failures. This is an area where the concept of swarm robotics

ould support in deriving strategies to ensure mission continuation and

ompletion even in the presence of a failed agent. 

Swarm robotics approaches are inspired by nature and offers the ad-

antages of natural systems such as robustness (ability to cope and adapt

ith the death or loss of individuals), scalability (ability to perform well

ith different group sizes) and flexibility (the ability to cope with varia-

ion in the environments) [14] . By extension, autonomous aerial swarms

re expected to be more capable than a single large vehicle, offering sig-

ificantly enhanced flexibility, adaptability, scalability, and robustness

15] . Such systems offer the advantage of being resilient and tolerant

f noise in the sensors and the environment [16] . Furthermore, swarm

obotics offers the promise of achieving the completion of complex tasks

ia simplistic agents that follow simple rules in their controllers. Nev-

rtheless, engineering efficient swarm behaviours is still a big research

hallenge. Many tools have been proposed to deal with this challenge.

hey include the use of reinforcement learning, evolutionary principles

nd behaviour based architectures. The former two rely finding the op-

imal control policy in a large search space while the latter relies on

esigning and adding modular behaviours to an architecture [2,3] . 
2 
Behaviour based architectures provide the ability to develop hy-

rid nature inspired algorithms and design swarm system effectively

y adding the required ingredients (behaviours) needed to accomplish

 goal [17] . By adding the ingredients as modules, each module can be

eparately debugged, tuned and its effect on the system analysed. They

lso provide the ability to achieve hierarchical architectures in which

he modules can be organised into multiple control levels with each op-

rating at varying granularities, levels of abstraction and time scales

2] . 

Chung et al. [18] highlighted the potential of applying hierarchi-

al architectures to achieve well-founded, computationally-efficient and

calable algorithms for aerial swarms. Hierarchical architectures pro-

ide scaffolding for algorithms and can result in scalable systems that

an achieve decentralized planning, reasoning, learning, and percep-

ion in the presence of uncertainties. Furthermore, such approaches

ave been found to be useful in both the machine learning and con-

rol fields for dealing with complexity and high dimensionality. Chung

t al. [18] proposed that learning and decision-making architectures to

rovide aerial robot swarms with high levels of autonomy and flexi-

ility will ensure reduced risk and cost as well as robust autonomous

perations. 

The behaviours for a behaviour based architecture system can be

esigned in any way deemed necessary by the designer to achieve a

oal. For example, in [19] a set of basic functionalities (called elemen-

ary behaviours) were designed and combined in a priority order to at-

ain complex tasks. In [20] , fuzzy rules were used to develop the be-

aviours of a swarm required to perform exploration and navigation

n an environment. Apart from the use of classical controllers such as

ID or LQR, the application of fuzzy logic is another way to achieve

o flocking behaviours on UAVs [21,22] . However, this requires an

dequate knowledge of the domain in order to design effective fuzzy

ules. 

From the perspective of communication and control mode, there are

ainly two modes, centralized and decentralized method, which require

ifferent control strategies. In the first communication mode, the con-

rol strategy requires a centralized master which is assigned to receive

he states of all agents, process and transmit control commands. The

ain benefit of this approach is that developer can easily modify the

ontroller from master. However, from the system point of view, this

trategy is not robust because of the high reliance and heavy computa-

ion on the master. 

In decentralized communication mode, agents can process their own

ommands thereby reducing the computation cost on the master [23] .

evertheless, it is well known in literature that one of the major bot-

lenecks in decentralized algorithms is explicit communication. As the

umber of agents in the swarm increases, the communication network

opology becomes more complex increasing the communication delays

nd packet losses. This drastically affects the performance of the sys-

ems relying on them. One of the reasons for this is due to the limited

apability of the agents in the swarm and the need of the agents to have

nough information to estimate their own states as well as others for the

urpose of flocking. Undoubtedly, it puts forward a high requirement

or individual performance especially when considering cheap and low

omputational cost agents. As a result, it becomes more advantageous

o make use of a coordination system that limits the need for explicit

ommunication and hence complexity [24] . 

Inspired by biology, previous work by Reynolds proposed a dis-

ributed behavioural approach in which flocking can be achieved with-

ut the need for centralized communication and explicit communication

etween agents [25] . The resulting decentralized swarm controller has

een extended by numerous researchers where they have showed that

ven if the individuals cannot perceive the entire flock, a swarm consist-

ng of self-organized agents can still move as a flock through local infor-

ation interactions [26] . Taking inspiration from Reynold’s work, ex-

licit communication was not required to achieve a flocking behaviour

n this work. Instead the visual perception of neighbours was applied in
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 flocking behaviour generator to achieve the components of flocking

amely cohesion, aggregation and heading alignment. 

In [13] , the challenges raised for multi-UAV cooperative transport

ere highlighted. This included the need to explore energy optimiza-

ion and even energy distribution in multi-UAV collaborative transport

ystems, the need to have a mechanism to decide how many multi-rotors

ould be required to pick up a complex shaped objects based on their

ass distribution and shape as well as ensuring stability during trans-

ort. Furthermore, [27] highlighted that a cooperative transport system

hat is safe, scalable and able to perform agilely using only robotic vision

nd local communication between neighbours is still yet to be found. 

In this work, we present results that offer a roadmap towards provid-

ng a solution to the latter challenge identified in [27] while address-

ng the former challenges raised in [13] . In particular, our contribu-

ion lies in applying one of the tools in swarm engineering, a behaviour

ased subsumption architecture, to address these challenges. The nov-

lty of our architecture is that it is able to achieve scalable decentralised

ulti-UAV load transportation without the need of explicit communica-

ion between agents. In our architecture, coordination between agents

s achieved by using data from low cost monocular vision perception

nd cheap ultrasonic sensors on each agent. Our approach enables in-

ividual agents to search for a load in an environment, attach to it via

uction cups and carry it to a desired destination cooperatively ( Fig. 1 ).

uring attachment to the load, the agents are distributed according to

he mass requirements of the load thereby ensuring that energy usage

s uniformly distributed among the agents. Furthermore, we show that

ur approach is robust to disturbances thereby highlighting its ability

o ensure stability during load transport. 

The rest of paper is arranged as follows: In the next section, we dis-

uss the structure of our architecture in detail, including relative lo-

alization, the behaviours used in the architecture, mechanisms of be-

aviour fusion and load mass adapting cooperative transportation. In

ection 3 , simulation results are presented to validate the robustness

f our strategy as well as its energy distribution properties. Finally, we

onclude and put forward some suggestions for future work in Section 4 .

. Methodology 

In this section, we discuss the sensors and set up for the agents in

he swarm as well as the proposed subsumption architecture used for

ecentralised cooperative transportation. 

.1. Single agent model 

Each micro-UAV agent in the swarm is based on a Quadcopter. The

uadcopter is equipped as shown in Fig. 2 . A green sphere is used for

he identification of neighbours and self-localization within the swarm.

ltrasonic rangefinder and proximity sensors are used to obtain bound-

ry environment information for obstacle avoidance while a monocular

amera is arranged in such a way that it obtains a panoramic vision of

he environment. In order to obtain the panoramic image, a convex mir-

or was set upon the single monocular camera to obtain a 360-degree

ision. Furthermore, as shown in Fig. 3 , the basic flight control of agents

s realized, in level 0, by a cascade PID controller involving position, ve-

ocity and attitude controllers. 

.2. Subsumption architecture 

In this work, a subsumption architecture is designed to implement a

ecentralised cooperative transport by a swarm of Quadcopter agents.

hree different behaviours were chosen based on this goal: bacterium

ehaviour, flocking behaviour and obstacle avoidance behaviour. The

acterium behaviour was used for exploring the environment as well as

roviding exploitation based on the profile of the load. The flocking be-

aviour provided the mechanism for cooperation between agents while

he obstacle avoidance behaviour enabled agents to detect and avoid
3 
bstacles in their environment. The three different behaviours make up

he combined behaviour module shown as 2 ○ in Fig. 3 . 

The subsumption system architecture was arranged in 4 layers. Level

 contained the cascade PID controllers to provide attitude and altitude

ontrol for the Quadcopters. Levels 1 and 2 contain the three different

ehaviours mentioned above. These three behaviours are fused in the

elocity fusion module ( 3 ○ in Fig. 3 ). In level 3 ( 4 ○ in Fig. 3 ), the col-

ective target tracking is performed in order to maintain formation

uring the transportation of a load. The architecture also contains an

nvironment perception ( 1 ○ in Fig. 3 ) module for perceiving the envi-

onment. The specifics of this architecture are explained in detail in the

ollowing sections below. 

.3. Low level controllers module 

The low level controllers module is made up of a series of cascade

ID controllers, control mixer, motor control as well as GPS and IMU

ensors. The cascade PID controllers are responsible for low-level control

f the Quadcopters. It is made up of the position PID controller, the

elocity PID controller and the attitude PID controller. The position PID

ontroller accepts the desired destination position for the load to be

ransported as well as the current position of the agent. The output is

hen used as a velocity set point for the velocity PID controller. The

elocity PID controller outputs the desired yaw, roll and pitch angles

hich is then used by the attitude controller. The control mixer takes

he calculated thrust for the altitude of the Quadcopter and Euler angle

ate as input from the attitude PID controller. It then outputs four motor

peeds for a Quadcopter. The changes in the condition of the Quadcopter

s then detected by the GPS and IMU module for feedback to the cascade

ID controllers. 

.4. Environment perception 

The environment perception module represents all the abilities that

n agent uses to obtain information from the external environment.

gents can obtain range information around themselves and height of

he load by proximity sensors and an ultrasonic sensor respectively. This

nformation feeds into the obstacle avoidance behaviour and bacterium

ehaviour respectively. Furthermore, we use a panoramic camera on

ach agent to obtain relative coordinates w.r.t. the camera coordinate

f their neighbours in the swarm by tracking green sphere on the top

f each neighbouring Quadcopter. The following sections discuss this in

ore detail. 

.4.1. Object recognition for relative localization 

Relative localization is a prerequisite for swarm clustering [25] . Most

f the on-board relative localization techniques use a monocular camera

nd mounted distinguishable markers. For instance, Saska et al. used an

n-board real-time reformative flood-fill algorithm and a simple circular

attern composed of concentric black and white circles of known diam-

ters to achieve relative localization [28] . ArUco markers were used by

29] on the leader to obtain relative position while [30] realized leader-

ollower drone formation flying by equipping the leader with a unique

olored ball. In the processed monocular vision image, the ball occu-

ies a number of pixels that can be used to extract relative distance and

earing using the radius of the ball. This strategy is resilient to boundary

artial occlusion, boundary object segment and image distortion at the

dge [30] . 

In this work, a similar technique to [30] was applied. A green sphere

as used as a significant marker to represent each agent. Since the plane

rojection of a sphere at all directions in space is approximately circu-

ar, even under the case of distortion, this approach produces more ro-

ust results. Histogram equalization and Gaussian spatial filtering were

pplied to the raw image to improve image contrast and immunity to

oise jamming of images. After that, global thresholds from 𝐷 to
min 
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Fig. 2. Overview of single agent model. 

Fig. 3. Overview of subsumption architecture for each agent in the swarm. 

4 
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𝒗  
 max were used to achieve binarization and extract interested areas as

n Eq. (1) where, 𝐼( 𝑥, 𝑦 ) is the processed image output. 

( 𝑥, 𝑦 ) = 

{ 

1 , 𝑖𝑓𝐷 min ⩽ 𝐼( 𝑥, 𝑦 ) < 𝐷 max 
0 , 𝑒𝑙𝑠𝑒 (1)

Morphology processing was then applied to eliminate ambient light

n-homogeneity. The above resulted in the detection of the ball in the

onocular image from which the estimation of the relative positions of

he neighbours was obtained. 

.4.2. Bearing and distance estimation for relative localization 

Extracting distance and bearing estimation to objects in the real

orld requires us to determine a relationship between a detected im-

ge and the real world. 

An intuitive approach is to compare landmark radiuses in images

ith that of the real world by applying generalized Hough Transform

or geometric pattern detection [28] . However, this approach demands

onsiderable on-board computation. Furthermore, the results of Hough

ransform are extremely deterministic which means there is no compro-

ise in testing whether patterns exist or not in an image. Thus, due to

istortion and noise present in the camera, Hough Transform may give

nstable results. This could negatively impact the inputs to the flock-

ng algorithm resulting in destabilization of swarm formation. To avoid

his, we used landmark average pixel intensity of connected regions to

btain the depth information of a target object. This approach provided

mmunity against noise [30,31] . 

By applying binarization as a prerequisite procedure for connected

egion detection, we were able to extract the average pixel intensity of

he connected components as 𝑁 𝑖 . Using a speculative relationship 𝐹 (∗)
etween pixel intensity and depth information, we estimated the relative

istance between agent 𝑛 and agent 𝑖 . 

The relative bearing of neighbours from each agent 𝑛 is estimated

y the relative distance from the image plane centre of agent 𝑛 , to the

entroid position of the detected neighbour 𝑖 on the image plane. Where

 𝑥 𝑐 , 𝑦 𝑐 ) 𝑛 denotes the image plane centre of the 𝑛 th agent, and ( 𝑥 𝑖 , 𝑦 𝑖 ) 𝑛 de-

otes the centroid position of detected neighbour 𝑖 from the 𝑛 th agent’s

erspective. 

We establish a spherical coordinate system given by 𝝆𝑖 = ( 𝜃𝑖 , 𝜑 𝑖 , 𝑑 𝑖 )
hich represents the relative location of the 𝑖 th neighbour in the current

istributed agent 𝑖 ’s polar coordinate system. 𝑆 𝑛 is used to record local

ositions of all the neighbours of the 𝑛 th drone where 𝜃 is the relative

itch angle to a neighbour and 𝜑 is the relative yaw angle to a neighbour.

The above is captured in a relative localization mapping from image

lane to the polar coordinate system as 

 𝑛 = 

[
𝝆1 𝝆2 ⋯ 𝝆𝑖 

]
𝑛 
= 

⎡ ⎢ ⎢ ⎣ 
𝜃1 𝜃2 𝜃𝑖 
𝜑 1 𝜑 2 ⋯ 𝜑 𝑖 

𝑑 1 𝑑 2 𝑑 𝑖 

⎤ ⎥ ⎥ ⎦ 
𝑛 

= 

⎡ ⎢ ⎢ ⎣ 
𝐾 𝑥 0 0 
0 𝐾 𝑦 0 
0 0 𝐹 (∗) 

⎤ ⎥ ⎥ ⎦ 
⎡ ⎢ ⎢ ⎣ 
𝑥 1 − 𝑥 𝑐 𝑥 2 − 𝑥 𝑐 𝑥 𝑖 − 𝑥 𝑐 
𝑦 1 − 𝑦 𝑐 𝑦 2 − 𝑦 𝑐 ⋯ 𝑦 𝑖 − 𝑦 𝑐 
𝑁 1 𝑁 2 𝑁 𝑖 

⎤ ⎥ ⎥ ⎦ 
𝑛 

𝜃𝑖 ∈ [0 , 2 𝜋] , 𝜑 𝑖 ∈ [− 

𝜋

2 
, 
𝜋

2 
] , 𝑑 𝑖 ∈ ℝ 

+ (2) 

here 

 𝑖 = 

∑
𝑋 

∑
𝑌 

𝐼 
(
𝑥 𝑖 , 𝑦 𝑖 

)
, 𝑑 𝑖 = 𝐹 

(
𝑁 𝑖 

)
(3)

here the 𝐾 𝑥 and 𝐾 𝑦 are constant parameters that depend on camera

ntrinsic parameters and as such affect the calculation of the relative

earing. The values of these parameters were determined empirically.

or the panoramic camera used, we chose 

( 

𝐾 𝑥 

𝐾 𝑦 

) 

= 

( 

2 𝜋∕ 𝑅 𝑥 

− 𝜋∕ 2 𝑅 𝑦 

) 

, where

 

𝑅 𝑥 

𝑅 𝑦 

) 

denotes the image resolution. 
5 
.5. Combined behaviour 

In order to derive a swarm that searches and explores an unknown

nvironment cooperatively, we propose that several behaviours should

e running concurrently: (i) flocking behaviour for maintaining swarm

ormation, (ii) bacterium behaviour for searching and exploring the en-

ironment, and (iii) obstacle avoidance for avoiding collisions with the

nvironment and other agents. As mentioned previously, the subsump-

ion architecture provides a mechanism to derive a desired global be-

aviour through the fusion of several sub-component behaviours. The

ollowing sections describe the three chosen behaviours in detail and ex-

lain how their corresponding velocities were obtained in preparation

or a fusion strategy in 3 ○ of Fig. 3 . 

Furthermore, we subsume behaviours depending on conditions in

he environment. For example, the bacterium behaviour is used for ex-

loration and searching the environment. This behaviour is subsumed

y the obstacle avoidance behaviour if a neighbour is detected in very

lose proximity. In this case, the obstacle avoidance behaviour causes

he agent to accelerate away from the neighbour in order to avoid them.

n the other hand, the agent should be unconcerned about neighbours

hat are far away since they have no immediate threat. 

As a result, we split an agent’s surrounding area into three zones

 Fig. 4 ): near zone, mid zone and far zone. If the drone detects any

hreats in the near zone, i.e. other neighbours and obstacles, it will dis-

egard any other behaviours and trigger obstacle avoidance behaviour

irectly. The near zone control is set as the highest priority layer in the

ubsumption architecture. Neighbours in the far zone are ignored partly

ecause they are not an immediate threat and also because they are

ot detected due to the camera’s resolution. The flocking behaviour is

pplied at the mid zone where neighbours begin to be detected by an

gent. 

.5.1. Flocking behaviour generator 

The flocking behaviour of our swarm utilizes three rules. The

hree rules are separation, cohesion and friction which denote repul-

ion, aggregation and viscous friction-like interaction terms respectively

32,33] . The first two terms encourage agents to hold a certain distance

rom each other while avoiding collisions with each other. And the last

erm restrains attitude oscillations as the swarm seeks a steady state. We

efine a set of agents 𝑆 

𝑚𝑖𝑑 
𝑛 

, that contain all the neighbours surrounding

he 𝑛 th agent in the mid zone: 

 

𝑚𝑖𝑑 
𝑛 

= 

{ 

𝑎𝑔𝑒𝑛𝑡𝑠 𝑖 ∶ 𝑖 ≠ 𝑛 
⋀

𝑑 min ⩽ ‖‖𝑑 𝑖 ‖‖ < 𝑑 max 

} 

(4)

here 𝑑 min and 𝑑 max indicate the upper and lower bounds of the defined

id zone. 

In order to simplify the calculation in every iteration, we introduce

 virtual agent coordinate vector corresponding to the mid zone neigh-

ours set 𝑆 

𝑚𝑖𝑑 
𝑛 

of the 𝑛 th agent [34] . Thus the flocking velocity compo-

ent is given by 

𝒗 
𝑠𝑒𝑝 
𝑛 

= − 𝑘 𝑠𝑒𝑝 𝝆
𝑣𝑖𝑟𝑡𝑢𝑎𝑙 
𝑛 

= − 

𝑘 𝑠𝑒𝑝 ‖‖𝑆 

𝑚𝑖𝑑 
𝑛 

‖‖0 
∑

𝑖 ∈𝑆 𝑚𝑖𝑑 𝑛 

𝝆𝑖 ‖‖𝝆𝑖 
‖‖2 2 

𝒗 
𝑐𝑜ℎ 
𝑛 

= 𝑘 𝑐𝑜ℎ 𝝆
𝑣𝑖𝑟𝑡𝑢𝑎𝑙 
𝑛 

= 

𝑘 𝑐𝑜ℎ ‖‖𝑆 

𝑚𝑖𝑑 
𝑛 

‖‖0 
∑

𝑖 ∈𝑆 𝑚𝑖𝑑 𝑛 

𝝆𝑖 (5) 

here 𝑘 𝑠𝑒𝑝 and 𝑘 𝑐𝑜ℎ are predefined constant separation and cohesion

ains. 𝜌̇ is the approximate relative speed calculated by position differ-

nce between adjacent frames during relative localization of neighbours.

As mentioned previously, the velocity based friction term was intro-

uced to dampen the vibrations of an agent attempting to reach a steady

tate rapidly. 

This term is given by 

 

𝑓𝑟𝑖𝑐𝑡 
𝑛 

= 𝑘 𝑓𝑟𝑖𝑐𝑡 
̇𝝆𝑣𝑖𝑟𝑡𝑢𝑎𝑙 

𝑛 
= 

𝑘 𝑓𝑟𝑖𝑐𝑡 ‖‖𝑆 

𝑚𝑖𝑑 
𝑛 

‖‖0 
∑

𝑖 ∈𝑆 𝑚𝑖𝑑 𝑛 

𝝆̇𝑖 (6)
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Fig. 4. Zone definition with affected be- 

haviour regions. 

w  

e

𝒗  

C  

s

2

 

a  

a  

t  

b  

a  

e  

o  

c  

t  

i  

p  

g

 

[  

b  

s  

T  

m

𝜏  

 

 

|||  

w  

o  

t  

p  

o  

r  

t

r  

l  

s

s  

b  

i  

t  

t  

f  

a

 

t  

t  

t  

t

 

 

t  

A  

i  

m  

2

 

a  

a  

s  
here 𝑘 𝑓𝑟𝑖𝑐𝑡 is a friction gain that influences the intensity of the damp-

ning effect. Thus, the flocking term observed by swarm is 

 

𝑓 
𝑛 
= 𝒗 

𝑠𝑒𝑝 
𝑛 

+ 𝒗 
𝑐𝑜ℎ 
𝑛 

+ 𝒗 
𝑓𝑟𝑖𝑐𝑡 
𝑛 

(7)

hanging parameters 𝑘 𝑠𝑒𝑝 and 𝑘 𝑐𝑜ℎ adjusts the flocking density of the

warm. 

.5.2. Bacterium behaviour generator 

In an unknown environment, in order to find a target object and

dapt to its density distribution, individuals in a swarm need to search

nd explore the unfamiliar area as well as apply a strategy to conform to

he target object’s distribution once found. Towards this, the chemotaxis

ehaviour in bacterium foraging serves as an inspiration. Bacterium for-

ging is an example of an adaptive composite search strategy that can

xplore an extensive region and perform priority based searches based

n food profile distributions [35–37] . From an agent’s perspective, the

hemotaxis behaviour consist of tumble and run phases [38,39] . The

umble phase is a decision-making procedure in which the agent rotates

tself and finds a random orientation for the next movement. The run

hase is a migration process where the agent moves towards favourable

radients. 

In this work, we apply the Berg and Brown mathematical model

40] to achieve bacterium foraging behaviour. This model describes the

ehaviour of a bacterium as it searches an area for food and adapt its

earch according to the concentration distribution of the food profile.

his model has been successfully applied for the purpose of environ-

ent profile perceiving by Oyekan et al. [41] and is described as: 

= 𝜏0 𝑒 
𝛼

̄(
𝑑𝑃 𝑏 
𝑑𝑡 

)
(8)

̄𝑑𝑃 𝑏 

𝑑𝑡 
= 𝜏−1 

𝑚 ∫
𝑡 

−∞

𝑑𝑃 𝑏 

𝑑𝑡 ′
𝑒 

𝑡 ′− 𝑡 
𝜏𝑚 𝑑𝑡 ′ (9)

𝑑𝑃 𝑏 

𝑑𝑡 
= 

𝑘 𝑑 (
𝑘 𝑑 + 𝐶 ( 𝑥 ( 𝑡 ) ) 

)2 𝑑𝐶 

𝑑𝑡 
(10)

𝒗 
𝑏 
𝑛 

||| = 

𝛽0 
𝜅𝑣 × 𝐶( 𝑥 ( 𝑡 )) + 1 

(11)

here 𝜏 is the mean run time, and 𝜏0 is the mean run time in the absence

f concentration gradients. 𝜏𝑚 is a time constant that presents a transi-

ory memory for a single agent thus giving them knowledge about the
6 
ast conditions in the environment in the last 𝜏𝑚 . 𝑃 𝑏 shows the fraction

f the number of chemical particles bound to the bacterium’s chemical

eceptor. Besides, 
𝑑𝑃 𝑏 

𝑑𝑡 
and 

̄𝑑𝑃 𝑏 
𝑑𝑡 

represent the change of chemical percep-

ion with 𝑑𝑡 and the average change of chemical perception during 𝜏𝑚 
espectively. In this work, we use detected relative depth values of the

oad profile as 𝐶. The depth values were obtained by the ultrasonic sen-

or at the bottom of each Quadcopter. ||𝒗 𝑏 𝑛 || is the absolute bacterium behaviour velocity of an agent. 𝛽0 
hows the highest speed of foraging for an agent and determines the

asic velocity of the agent. An agent achieves the highest speed when it

s searching an area without food, that is where concentration is equal

o zero. 𝜅𝑣 is a constant and positive value, representing the amplifica-

ion factor for food concentration and it is used to tune for the impact of

ood concentration. 𝐶 ( 𝑥 ( 𝑡 ) ) is the concentration at the current location

nd time varying from 0 to the infinity. 

Upon analysing the equations above during run phases for an agent,

he phase length is constantly changing over time since the concentra-

ion is changing. Equations (12) and (13) show that the first derivative of

he run phase w.r.t time reduces and increases depending on the deriva-

ive of the receptor binding rate. 

𝑑𝜏

𝑑𝑡 
= 𝜏0 𝛼𝑒 

𝛼
̄𝑑𝑃 𝑏 
𝑑𝑡 × 𝑑 

𝑑𝑡 
( 

̄𝑑𝑃 𝑏 

𝑑𝑡 
) (12)

𝑑 

𝑑𝑡 

( 

̄𝑑𝑃 𝑏 

𝑑𝑡 

) 

= 𝜏𝑚 
−1 
[ 
𝑑𝑃 𝑏 

𝑑𝑡 
− 𝜏−1 

𝑚 ∫
𝑡 

−∞

𝑑𝑃 𝑏 

𝑑𝑡 ′
𝑒 

𝑡 ′− 𝑡 
𝜏𝑚 𝑑𝑡 ′

] 

= 𝜏−1 
𝑚 

( 
𝑑𝑃 𝑏 

𝑑𝑡 
− 

̄𝑑𝑃 𝑏 

𝑑𝑡 
) (13) 

In other words, the average value of the receptor binding rate tracks

he current value of 𝐶 and so the sign of 𝑑 
𝑑𝑡 

(
̄𝑑𝑃 𝑏 

𝑑𝑡 

)
is consistent with 

𝑑𝑃 𝑏 

𝑑𝑡 
.

s a consequence, the agent will use a higher frequency of run phases if

t is moving towards an optimal of the food profile ( ∇ 𝐶( 𝑥 ( 𝑡 )) ) or initiate

ore tumble phases if it is moving in the opposite direction (- ∇ 𝐶( 𝑥 ( 𝑡 )) ).

.5.3. Obstacle avoidance behaviour generator 

In this work, we use artificial potential field method [42] to generate

 repulsion velocity field for obstacle avoidance. By using Force Inducing

n Artificial Repulsion from the Surface , the repulsion velocity increases

ignificantly as the proximity with an obstacle decreases. This is shown
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𝑜 
𝑛 
= 𝜇

( 

1 ‖𝝆‖ − 

1 ‖‖𝝆0 ‖‖
) 

1 ‖𝝆‖2 𝜕 𝝆𝜕x , 𝑖𝑓 ‖𝝆‖ ⩽ ‖‖𝝆0 ‖‖ = 𝑑 min (14)

here 𝜇 is a constant gain and 
𝜕 𝝆

𝜕x denotes the partial derivative vector

f the distance from a point on an agent to an obstacle. 

𝜕 𝝆

𝜕x 
= 

[
𝜕 𝝆

𝜕𝑥 

𝜕 𝝆

𝜕𝑦 

𝜕 𝝆

𝜕𝑧 

]𝑇 
(15)

In the near zone, there is only the obstacle avoidance behaviour act-

ng. As a result, this causes agents to disperse rapidly without being

estricted by the cohesion term in the flocking behaviour. 

.6. Velocity fusion 

The Velocity Fusion module ( 3 ○ in Fig. 3 ) was used to fuse the veloc-

ty values generated by the three behaviour algorithms, flocking, bac-

erium and obstacle avoidance. The output of the velocity fusion mod-

le acts on the velocity control loop of the agents. The main idea of

his fusion algorithm is: (i) to provide a mechanism to tune the trade-off

etween behaviours respectively, (ii) to eliminate undesirable cluster

riving forces in the swarm and (iii) to accelerate convergence while

eeping the swarm’s topology to match with the profile and mass distri-

ution of the load. 

This was achieved by summing up the three velocities as 𝑣 𝑠 
𝑛 

according

o 

 

𝑠 
𝑛 
= 𝒗 

𝑏 
𝑛 
+ 𝒗 

𝑓 
𝑛 
+ 𝒗 

𝑜 
𝑛 

(16)

here 𝒗 𝑏 
𝑛 
, 𝒗 

𝑓 
𝑛 , and 𝒗 𝑜 

𝑛 
represents bacterium, flocking, and obstacle avoid-

nce behaviour velocities respectively. 

However, in this work, when there was a spacious environment and

 comparatively small load, we observed that though part of the swarm

ound the load first, the agents can be pulled away from the load by

ther agents under the influence of the cohesive term in the flocking

ehaviour. This is especially true if the visible neighbours are operating

n the edges of the detected load. 

To address this, we introduce a parameter 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 (See Algorithm 1 )

lgorithm 1 Decentralised Load Searching and Mass Adapting Algo-

ithm. 

nput: The flocking behaviour velocity, 𝒗 
𝑓 
𝑛 ;The bacterium behaviour

velocity, 𝒗 𝑏 
𝑛 
;The obstacle avoidance behaviour velocity, 𝒗 𝑜 

𝑛 
;The cur-

rent situations of proximity sensor and ultrasonic sensor, 𝑠 
𝑝𝑟𝑜𝑥 
𝑛 , 𝑠 𝑢𝑙𝑡𝑟𝑎 

𝑛 
,

𝑠 
𝑝𝑟𝑜𝑥 
𝑛 =True means there are obstacles around the agent, 𝑠 𝑢𝑙𝑡𝑟𝑎 

𝑛 
=True

means agents have reached the target object; 

utput: Fusion behaviour velocity, 𝒗 𝑠 
𝑛 
; 

1: while True do 

2: if 𝑠 
𝑝𝑟𝑜𝑥 
𝑛 is True then 

3: Obstacle detected, 𝒗 𝑠 
𝑛 
= 𝒗 

𝑜 
𝑛 

4: goto final 

5: else if 𝑠 𝑢𝑙𝑡𝑟𝑎 
𝑛 

is True then 

6: Target detected, 𝒗 𝑠 
𝑛 
= 𝒗 

𝑏 
𝑛 
+ 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 𝒗 

𝑓 
𝑛 

7: else 

8: Continue searching, 𝒗 𝑠 
𝑛 
= 𝒗 

𝑏 
𝑛 
+ 𝒗 

𝑓 
𝑛 

9: end if 

10: final 

11: return 𝒗 𝑠 
𝑛 

12: end while 

hich adjusts the impact of the flocking behaviour once a load is found.

y using this strategy, high speed chemotactic agents operating on the

oundary will have a reduced impact on agents who are already oper-

ting above the target load. Nevertheless, as members in a swarm, the

gents operating on the load will still have an impact on their visible

eighbours by attracting and pulling them into the load area with the

ohesive term of the flocking behaviour. By following this strategy, the
7 
ime needed for converging on the load is reduced. The pseudo code

or the searching strategy for every agent is described in Algorithm 1 ,

here the parameter 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 has a range of between zero and one. 

.7. Collective target tracking and cooperative load transport to a location 

The load to be transported is assumed to have the following proper-

ies: 

• It is made up of a homogeneous material that can be detected by the

sensing modalities on the Quadcopter. For example, if the sensing

modality on the Quadcopter is a laser, then it is difficult for a laser

to detect a load made of glass. 
• The density of the material is uniform all over the load. Since 𝑀𝑎𝑠𝑠 =

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 ∗ 𝑉 𝑜𝑙𝑢𝑚𝑒 , the mass of the sections of a load are determined

by the volume and by consequence the shape or dimensions of the

section. 
• Using the last assumption, it means that the load to be transported

can take any arbitrary shape as defined by the user and our scheme

will work provided that the load shape can be detected by sensors

on the Quadcopter for subsequent transport. 

During collective transport, it is crucial to maintain formation in or-

er to avoid collisions between agents. Due to the decentralized design

f the flock, we assume each agent has a predefined destination coor-

inate stored onboard. We input this as a desired coordinate command

irectly into the position controller of the subsumption architecture of

ach agent. 

As mentioned in the last subsection, the implemented mass adapt-

ng exploration obtains a distributed and optimized relative position for

ach agent that satisfies the mass distribution on the load. In order to

educe onboard computation cost, these relative positions are used by

very agent as a reference signal to maintain their position in the swarm.

In the level 3 of subsumption architecture, these distinct relative po-

itions and the specified destination coordinates are transferred to the

ollective target tracking module ( 4 ○) on each agent for use to track and

alculate the corresponding velocity commands. 

. Experimental results and discussion 

In this section, we present the results of the performance of our ar-

hitecture discussed in Section 2 . The effectiveness of our strategy in

ases of carrying various shapes of objects is evaluated in several sim-

lation scenarios using six Quadcopters. It is important to emphasise

hat even though we used six team mates in our simulations, our pro-

osed strategy can be scaled up to multiple team members. We examine

ow different parameters of our architecture’s algorithm affect the load

ass adapting strategy (non-uniform swarm network) and compare its

erformance with non mass adapting strategy (uniform topology swarm

etwork). In order to compare both strategies, we study their robustness

o noise as well as their energy consumption during operation. 

The simulations are run in the robot simulator CoppeliaSim and ROS

nvironment (Robot Operating System). The Quadcopters used in the

warm are based on the AR.drone2.0 designed by Parrot and can be

ound in CoppeliaSim. Additional grasping mechanism, visual sensor

odule, proximity sensor module, ultrasonic sensor and a significant

andmark for identification are added to each Quadcopter. The spher-

cal vision sensor mounted on the Quadcopters provide raw images of

024 ×256 pixels. The proximity sensor can detect 0.5m range around

t to avoid collision while the ultrasonic sensor has a maximum sensing

ange of 20 meters and provides the relative height of objects below the

gent. 

In the actual design, the Quadcopter is built of carbon fiber tube

nd weighs approximately 520g. The onboard autopilot is custom de-

ign including Linux built 1 GHz 32 bit ARM Cortex processor with

00MHz video DSP, 1 GB DDR2 200MHz RAM, 3 axis gyroscope, 3 axis

ccelerometer, 3 axis magnetometer, pressure sensor and ultrasound
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a  
ensors. Our distributed controllers communicate with CoppeliaSim via

OS by sending propeller rotation speeds to rotors for control. 

Our results and analysis in this section is mainly divided into three

arts: performance of convergence onto various load profiles, coopera-

ive transport of loads and evaluation of robustness of our strategy. 

.1. Converging on load objects 

.1.1. Converging on various load profiles 

In order to test the performance of our approach to converge onto

arious load profiles, we selected several representative shapes includ-

ng convex and concave. The shapes were rectangle, peanut and the

etter “L ” shape. The purpose here was to establish that our proposed

trategy was capable of converging onto various load shapes. The results

re shown in Fig. 5 . In all the scenarios, robots begin with completely

andom positions in an unknown environment. Under the action of bac-

erium chemotaxis and flocking behaviour, the swarm finds and adapts

o the mass distribution of the detected load. 

In order to measure the adaptability of the swarm to the load mass

istribution, the Kullback Leiber value, which is popularly applied in

stimating similarity between two distributions [41] , is proposed as cri-

eria. The lower the KL divergence value, the closer the distribution of

he swarm is to the mass distribution profile of the load. 

 𝐾𝐿 = − 

𝐴 ∑
𝑌 

𝐴 ∑
𝑋 

𝑆( 𝑥, 𝑦 ) log 
( 

𝐹 ( 𝑥, 𝑦 ) 
𝑆( 𝑥, 𝑦 ) 

) 

(17)

( 𝑥, 𝑦 ) represents the load mass distribution in a certain rectangular

rea 𝐴 ( 𝑋, 𝑌 ) , that is slightly larger than the object; 𝐹 ( 𝑥, 𝑦 ) denotes the

ormalized population density distribution of the swarm, achieved by

alculating the number of drones per meter around each location in

 ( 𝑋, 𝑌 ) . At the beginning of a simulation run, the KL distance is large.

his is because the aerial robots in the swarm are randomly placed in

he environment resulting in differences between the swarm population

istribution and the target load mass distribution. As seen in Fig. 5 , dur-

ng simulations, the swarm distribution converges rapidly to the load

ass profile, and eventually maintains a small value. The results con-

rm that our strategy can be applied to various load profiles and not

imited to only convex objects. 

.1.2. Converging with different gains 

For complex load profiles with irregular surfaces, the mass adapt-

ng topology of the swarm can be adjusted by changing the param-

ters of our algorithm. For example, as discussed in Section 2.6 , our

lgorithm 1 implements a 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain in line 6. This gain can be used

o adjust the impact of the flocking behaviour once a load is found. 

Figure 6 highlights the comparison results of when 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 = 1 (that

s no 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 adjustment when the load is found) versus 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 = 0

that is 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 adjustment when the load is found) when applied to a

ectangular target load. As seen in the results, the approach of adjusting

 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 when a load is found is effective in increasing the convergence

ate to the load’s profile. It is also effective at adapting more closely to

he profile of the load. 

In order to further investigate the effects of varying 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gains

n the mass adapting swarm topology and the 𝐾𝐿 divergence values,

e used a peanut shape target load. Initially, flock members are ran-

omly distributed in the environment to start searching and exploring

or the load. This results in an initial KL divergence value 25. We tested

 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gains of 0, 0.05 and 0.15 with results in Fig. 7 showing that as

 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain increases, the convergence rate increases and the KL diver-

ence cost also increases. The effect of increasing the 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain can

e seen more visually in Fig. 8 . It can be seen that the swarm’s topology

dapts more closely to the peanut shape when the 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain is set

o 0. 

It should be noted that even when the 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain is set to 0 and nul-

ifies the flocking velocity behaviour, the obstacle avoidance behaviour

ill be activated if a collision between agents is imminent. The obstacle
8 
voidance behaviour prevents collision and leads to separation between

he agents. The obstacle avoidance behaviour is also instrumental in re-

elling agents to explore other areas on the load while the bacterium

ehaviour drives agents to individually find an optimal on the load pro-

le leading to the aggregation of agents. Furthermore, the movement

f the agents is influenced by the profile of the load leading to mass

dapting (see Eq. (10) ). As a result, a 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain of 0 leads to lower

L divergence values. 

The combination of the effects of aggregation (provided by bac-

erium behaviour) and separation (provided by the obstacle avoidance

ehaviour) causes a form of flocking to occur over the load profile even

hough the 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain of the flocking behaviour is set to 0. Neverthe-

ess, this does not mean that the flocking behaviour has no relevance

hen adapting to the profile of a load. It is instrumental in recruiting

ther agents to the load once found as well as providing structure to the

warm topology in the presence of the random nature of the bacterium

ehaviour. As such, having the ability to tune the 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 gain ensures

hat we have some level of control over the swarm structure. 

.2. Cooperative transportation 

In the last section, we presented the effectiveness of Algorithm 1 in

onverging to the profile of a load whereas in this section, the re-

ults of the cooperative transport of the load are presented. In order to

emonstrate the necessity and advantage of applying load mass adapt-

ng swarm topology for cooperative transport, we compare the results of

wo sets of experiments. In the first experiment, a uniform swarm topol-

gy is used to transport the load while an load mass adapting topology

s used in the second experiment. 

.2.1. Load collaborative transport 

As discussed in the methodology section, the swarm executes collec-

ive tracking in which each agent maintains their relative distance to

ach other. At the beginning of the simulations, agents are placed ran-

omly in a simulated square arena that has a dimension of 20meters by

0meters. After converging to the load, the agents descend and attach

o the load via a vacuum suction cap held at the end of a cable. The load

s then lifted to 1.3 meters above the ground. Subsequently, the swarm

erforms the collective tracking operation by carrying the load to the

estination ( Fig. 9 ) where the payload is released. 

The individual positions of the agent in the swarm and hence the

opology distribution when they converge on the load is obtained

y Algorithm 1 prior to load attachment. After attachment to the

oad, the agents collaboratively transport the load to a desired co-

rdinate. Figure 10 shows the trajectories for the agents executing

lgorithm 1 prior to attachment to a peanut and a rectangle shaped

oad as well as during the collaborative load transport to a coordinate.

he ability of the collective tracking module ( 4 ○ in Fig. 3 ) in keeping

gents at their relative positions in the swarm can be seen in Fig. 10 .

igure 9 also shows the swarm topology during collaborative load trans-

ort to the desired coordinate position. It should be noted that the col-

ective tracking module maintains the relative position between agents

ithout communication between the agents. 

.2.2. Energy comparison 

In this section, we discuss how a mass adapting swarm topology im-

acts the energy consumption of individuals in the swarm. Towards this,

e make use of an uneven load as shown in Fig. 11 . We tested three

cenarios: (i) uniform swarm topology with power restrictions placed

n the agent; (ii) uniform swarm topology without power restrictions

laced on the agent and (iii) mass adapting topology with power re-

trictions placed on the agents. We shall now discuss each scenario in

urn. 

Uniform swarm topology with power restrictions placed on the

gent: We commanded the agents to lift a load to an altitude of 1 . 3 𝑚
s seen in Fig. 11 . It is seen in Figs. 11 a and 12 b that the agents could
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Fig. 5. Converging of the swarm to various shapes where K 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 = 0 . 
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l  

s  

l

r  

n

ot lift the load to the desired altitude. The energy consumption of each

f the agents is shown in Fig. 12 a where it can be seen that the power

sage of each agent varies depending on where they are attached on the

oad. In this experiment, we restricted the amount of thrust that each

otor on the drone can generate. The limitation was informed by the

hysical parameters of the Parrot Drone. Two important power values,
9 
o-load and maximum power, were used during our analysis. The no-

oad power represents the maximum power required by agents to hover

teadily without any payload, while the maximum power is the upper

imit on the motors. It can be seen in Fig. 12 a that 𝐷𝑟𝑜𝑛𝑒 0 and 𝐷𝑟𝑜𝑛𝑒 1 
eached the maximum power while 𝐷𝑟𝑜𝑛𝑒 4 and 𝐷𝑟𝑜𝑛𝑒 5 were below the

o-load power value. 
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Similarity Between Object Shape and Swarm Distribution
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Fig. 6. Converging comparison of changing the parameter 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 from 1 to 0 once the rectangular load is found. 
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Fig. 8. Converging performance on a peanut 

shape load, under various 𝑘 𝑓𝑙𝑜𝑐𝑘𝑖𝑛𝑔 values. 

Fig. 9. Cooperative transportation of various loads to a destina- 

tion. 

Fig. 10. Cooperative transportation trajectory. 

11 



K. Huang, J. Chen and J. Oyekan Swarm and Evolutionary Computation 67 (2021) 100957 

Fig. 11. Lifting result for uniform and mass 

adapting topology. 
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Fig. 12. In Uniform topology, power on each Quadcopter varies depending on where they are attached to the load. The Quadcopters are not able to lift the load. 

Fig. 13. Power on each Quadcopter and their height in uniform topology scenario. Energy distribution is uneven and the Quadcopters lift the load. 
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Uniform swarm topology without power restrictions placed on

he agent: By removing the power limitations on the motors of each

gent, it can be seen in Fig. 11 b that the agents were able to lift the load

o the desired height. However, to achieve this, the power usage of two

f the drones ( 𝐷𝑟𝑜𝑛𝑒 0 and 𝐷𝑟𝑜𝑛𝑒 1 ) had to unrealistically go above the

aximum power capabilities of the motor ( Fig. 13 ). In this case, these

wo drones were doing majority of the heavy lifting. 

Mass adapting topology with power restrictions placed on the

gents: We then deployed our mass adapting strategy as seen in Fig. 11 c.

ith our strategy, the agents were able to lift the object with a more

niform power usage that is below the maximum power limitation of

he motors on each agent ( Fig. 14 ). When considering physical wear and

ear, this approach is more likely to be gentler on the motors as well

a  

12 
s the batteries of each agent. Furthermore, by comparing the power

sage of the mass adapting swarm topology versus the uniform swarm

opology without power limitation, it was discovered that the power

sage of the mass adapting topology is lower ( Fig. 15 ). From the above

esults, it can be concluded that uniform distribution formation demands

 higher energy usage from the swarm. 

.2.3. Robustness comparison 

We then analysed the stability of the mass adapting swarm topology

o external disturbances. In order to introduce disturbances, we make

se of a simulated wind tunnel in CoppeliaSim. 

The wind from the wind tunnel is simulated by small particles that

re generated randomly and propelled from the wind tunnel. The swarm
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Fig. 14. Power on each Quadcopter and height in load mass adapting topology scenario. Energy distribution among the members is even and the Quadcopters lift 

the load. 

Fig. 15. Power comparison between a uniform topology 

swarm and a mass adapting topology swarm. 

s  

b  

i  

d  

b  

i  

h  

u  

o  

d  

𝐸

w  

a  

k  

v

 

s  

k  

a  

r  

t  

c  

i

 

a  

e  

b  

o

 

T  

b  

w  

n  

f  

W  

a  

d  

t

 

s  

s  

i  
ystem is then placed in the wind tunnel ( Fig. 16 ) where a steady distur-

ance is exerted on it. The system’s robustness can then be analysed and

nferred by observing the sensitivity of the entire system to the external

isturbances [43] . In the previous works, the stability of a load carried

y agents is analysed via precise dynamic modelling due to the load be-

ng carried at pre-defined and known connections [44,45] . In our case

owever, the swarm formation and the points of connection to a load is

nknown prior to the load being lifted. As a result, we use kinetic energy

f the load as a metric to infer the robustness of the swarm system to

isturbance. The kinetic energy of the load was obtained according to:

 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 = 

1 
2 
𝑚𝑣 2 , 𝐸 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 = 

1 
2 
𝐽𝜔 

2 , 𝐸 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 = 𝐸 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 + 𝐸 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 

(18) 

here 𝑚 and 𝐽 are the mass and the moment of inertia of the load; 𝑣

nd 𝜔 are translation and rotation velocities of the load. A higher load

inetic energy means that the robustness of the system is low and vice

ersa. 

In order to further investigate the robustness of the mass adapting

warm system, we tested how cable length and cable angle affects the

inetic energy of the load when it is lifted. Towards this, we introduce

 scaling factor that expands and contracts the swarm by increasing and
13 
educing the distance between individual members respectively. Firstly,

he swarm lifts the load and then expands by a scaling value so that the

able angle can increase while keeping the swarm’s distribution accord-

ng to mass. 

As a result of the above, the cable length and swarm scaling values

re selected as independent experimental variables while the kinetic en-

rgy of the load is the dependent variable ( Fig. 17 ). The experiments

egin from a static state, after which disturbance is added for a period

f time (60s) and the kinetic energy of the load obtained. 

We also define two swarm scenarios: dynamic and non-dynamic.

he dynamic scenario is a situation in which the swarm is influenced

y the load’s oscillation and corresponding vibrations in the cable

hen the system is under external disturbance. The non-dynamic sce-

ario is an ideal situation, where the agents in the swarm are not af-

ected by the vibrations in the cables and the oscillations of the load.

e conducted experiments to compare the influences of cable length

nd cable angles (through swarm scaling) in these scenarios in or-

er to derive the key principles for achieving load stability during

ransport. 

Experimenting with swarm scales: In the experiments of how

warm scales affect the robustness, dynamic and non-dynamic swarm

cenarios are loaded into the wind tunnel respectively with various scal-

ng values. As shown in Fig. 18 a, the robustness of the system is reduced
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Fig. 16. Robustness evaluation by wind tunnel disturbance. 

Fig. 17. How cable lengths and swarm scales 

influence system stability. 

Fig. 18. Robustness comparison of different scales in dynamic swarm and non-dynamic swarm. The red stars in the error bars show the average kinetic energy while 

the blue bars show the variance of the kinetic energy over 60s. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 

14 
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Fig. 19. Robustness comparison of different cable lengths in dynamic swarm and non-dynamic swarm. The red stars in the error bars show the average kinetic 

energy while the blue bars show the variance of the kinetic energy over 60s. (For interpretation of the references to color in this figure legend, the reader is referred 

to the web version of this article.) 

Fig. 20. Visual representation of how swarm 

scale affects robustness. 
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ith the expansion of the swarm in the dynamic scenario. However, we

bserve the opposite results in non-dynamic scenario, where the robust-

ess is improved by the expansion of the swarm ( Fig. 18 b). 

The reason for these results is that the larger values of the scaling

actor leads to larger angles between the cables and the load. This in-

reases the tension on the cables ( Fig. 20 ) which dramatically affects

he Quadcopters attitude in the dynamic model and makes them unsta-

le. While in the non-dynamic model, the Quadcopters are consistently

table, so that the load is pulled and holds steadily. 

Experimenting with cable lengths: In the dynamic scenario, we

bserved that the load-suspended system has less kinetic energy and is

ence more robust when a longer cable is used ( Fig. 19 a). When the

oad is affected by disturbances, its motion characteristics is oscillatory

nd similar to that of a simple pendulum. The oscillation frequency

s higher in a system with shorter rope lengths. In the dynamic sce-

ario, this requires the drone to make demanding fast attitude adjust-

ents; whereas with longer cables, low-frequency oscillations occur and

he load has lower kinetic energy or better robustness ( Fig. 21 ). How-

ver, in the non-dynamic scenario, the opposite results are observed

 Fig. 19 b). As cable length increases, the kinetic energy of the load

ncreases. 
15 
. Conclusion and future work 

Ensuring stability, robustness and even energy distribution among a

eam of Quadcopters are some of the pressing challenges during coop-

rative transport of complex loads [13] . Inspired by swarm robotics,

e have presented a behaviour based subsumption architecture that

chieves load mass adaptive cooperative transport by a swarm of Quad-

opters. Our strategy is able to ensure robustness to noise and even en-

rgy distribution between agents. Furthermore, our architecture is able

o accelerate the converging to various load mass distributions without

rior knowledge. 

The subsumption architecture is based on the combination of three

ehaviours: flocking, bacterium and obstacle avoidance. The choice of

hese behaviours was based on the desired goal of the swarm. The flock-

ng behaviour enabled agents to move cooperatively while avoiding col-

isions with each other. The bacterium behaviour provided agents with

he capability to explore an environment in search for the desired load.

nce the load is found, the bacterium behaviour enables the agents to

dapt their motions based on the profile of the desired load. The obstacle

voidance behaviour prevents collisions from happening with objects in

he environment including the agents themselves. 
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Fig. 21. Visual representation of how cable length affects robustness. 
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The resulting swarm is decentralized and does not use explicit com-

unication between members. Instead it uses vision as well as proxim-

ty sensors to achieve cohesion, separation and obstacle avoidance. The

warm is able to adapt to the profile (mass distribution) of a detected

oad resulting in a mass adapting swarm topology. By applying a suc-

ion mechanism, the swarm is able to grab the load and carry it to a tar-

et location while maintaining the load profile topology. Through sim-

lation results, we demonstrate that our load mass adapting approach

onserves more energy during transport than an approach in which the

warm maintains a uniform topology. During our experiments, we dis-

overed that if the load’s profile is smaller than the footprint of the

warm, some members of the swarm will be repelled away by members

lready on the load. The repelled members then keep exploring the en-

ironment for other loads. This highlights the potential for our approach

o automatically assign the appropriate number of individuals to a load’s

ransport depending on the need. This will be explored further in future

ork. 

Furthermore, we show how the length of cables used as well as the

able angle between the load and the agent impacts swarm system ro-

ustness during load transport. Through the use of a kinetic energy met-

ic, it was discovered that longer cable lengths and smaller angles im-

rove robustness of the swarm system. 

Since in this work, we assumed a load of uniform density through-

ut (that is a load made of a homogeneous material through-out), future

ork should look into how loads of varying densities (heterogeneous

aterials) can be effectively transported using a swarm of cooperative

gents. Furthermore, investigations should be carried out into how real

ime dynamic adjustments of cable lengths during disturbances could

urther improve swarm stability and robustness. This is particularly im-

ortant when dynamic load shifting during transport (e.g transporting

uids) is taken into consideration. 
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